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Abstract. We will give a proof of Ocneanu’s announced classification of subfac-

tors of the AFD type II1 factor with the principal graphs An,Dn, E7, the Dynkin

diagrams, and give a single explicit equation of exp
π
√−1
24

and exp
π
√−1
60

for each

of E6 and E8 such that its validity is equivalent to existence of two (and only two)

subfactors for these principal graphs. Our main tool is flatness of connections on

finite graphs, which is the key notion of Ocneanu’s paragroup theory. We give the

difference between the diagrams D2n and D2n+1 a meaning as a Z/2Z-obstruction

for flatness arising in orbifold construction, which is an analogue of orbifold models

in solvable lattice models.

§0 Introduction

Since the breakthrough of the index theory of V. F. R. Jones [10], more and more

deep unexpected connections of subfactor theory to several branches of mathematics

and physics have been found [11].

In the theory of operator algebras, the classification of the approximately fi-

nite dimensional (AFD) subfactors is one of the most important and challenging
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problems. Especially classification of subfactors with small Jones index, less than

(or equal to) 4, has attracted much attention. The principal graph of a subfactor

has been known as an interesting invariant, and it has been known that the prin-

cipal graph of a subfactor with index less than 4 is one of the Dynkin diagrams

An,Dn, E6, E7, E8. (See [6, Chapter 4].) On this classification problem, A. Oc-

neanu has announced the following striking classification in [16] as the first major

step in the classification of subfactors.

Classification announced by Ocneanu. There is one subfactor for each Dynkin

diagram An, one for each diagram D2n, and a pair of opposite but non-conjugate

subfactors for each diagram E6 and E8. These are all the subfactors of the AFD

factor of type II1 with index less than 4.

For proving this statement, we need an analytic argument (Ocneanu’s “spanning

theorem”) and an algebraic/combinatorial argument on the Dynkin diagrams. Oc-

neanu announced the above statement in 1987, but the details of his proof have not

appeared yet. For analytic aspect of this approach, S. Popa has given a proof of the

spanning theorem in [18] under a weaker assumption than Ocneanu’s, and moreover

he has recently announced a stronger result in [19], which is in the final form in this

approach. That is, this approach is a classification of subfactors by higher relative

commutants, and Popa’s announcement gives necessary and sufficient conditions

for higher relative commutants to give the original subfactor.

The purpose of this paper is to supply proofs of algebraic/combinatorial aspect of

the above announcement for the first time in publication. The most mysterious part

of Ocneanu’s announcement is that D2n+1 are eliminated while D2n are possible,
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unlike other A-D-E classifications in mathematics. We use an idea of orbifold

models in solvable lattice model theory [5, 13] to this problem and get the first

complete proof in publication and a clear meaning of this fact as a Z/2Z-obstruction

for flatness arising in the orbifold procedure of making Dn from a Z/2Z-symmetry

of A2n−3. This is the main original feature of this paper.

In Ocneanu’s paragroup theory, he has the principal graph with an additional

group-like structure (a connection) via his “Galois functor”. This graph is an

analogue of a underlying set of a group and additional structure is an analogue

of Lie group structure. He calls such an object paragroup, which is a certain

quantization of finite groups. This is a (non-commutative) analogue of the Galois

groups for subfields. Paragroup can be also regarded as a “discrete” analogue of

compact manifolds and an analogue of solvable lattice models without a spectral

parameter. (See [16, 17] for background and [1] for solvable lattice models.) We

emphasize similarity between paragroups and solvable lattice models in this paper.

An analytic part of this approach consists of proving a system of increasing

finite dimensional algebras constructed from the graph, Ocneanu’s string algebra,

approximates the original subfactor as much as one wants. This requires a very

deep analysis. (See [18].) With this part completed by S. Popa, a classification of

subfactors at least with a certain good property, called finite depth, is reduced to

a classification of paragroups.

An algebraic/combinatorial aspect of the theory consists of determining all the

possible paragroup structures of a given graph. This is an analogue of a problem

of determining all the finite groups when its order is given. (The Jones index is

an analogue of an order of a group.) If the index is less than 4, then the finite
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depth condition is automatically satisfied, thus we only need to classify paragroup

structures on the Dynkin diagrams. This is equivalent to a classification of flat

connections, whose definition and properties will be discussed below. Although it

is a trivial exercise to determine all the finite groups with order less than 4, our

problem requires much more detailed arguments.

The case index=4 is still tractable as in [9, 19], but when we allow the index to

be bigger than 4, the situation becomes much worse suddenly as in [17, IV.4] and

a complete classification seems hopeless.

The book [6] is a basic reference on the index theory and its relation to graphs,

and [16] contains a very good exposition on background of the theory.

The contents of each section are as follows.

In §1, we review basics of Ocneanu’s theory. One of the purposes of this section

is fixing notations clearly.

In §2, we give an explanation of the key notion flatness of the entire theory.

Though Ocneanu has given a definition in [16] in two equivalent forms, its details

were unavailable.

Section 3 handles a connection on the Dynkin diagrams. Ocneanu’s connec-

tion gives an analogue of multiplication of groups. Although this part is rather

elementary, we think it is helpful to work out in its complete details.

Sections 4 and 5 are main parts in our original approach based on orbifold

construction. We will prove a technical proposition in §4 for the diagrams An by

induction. This will be used in §5.

Section 5 deals with the Dn diagrams, and it is the main body of this paper.

Using a cell system of Roche [20] satisfying a certain star-triangle relation, we
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reduce the problem of Dn to that of A2n−3, which is more tractable. This is

an idea of orbifold, and a subfactor with the principal graph D2n is realized as

Nθ ⊂ Mθ, where N ⊂ M is a subfactor with the principal graph A4n−3 and θ is

an automorphism of M of order 2 with θ(N) = N .

In the last section §6, we handle E6, E7, E8. For each of E6 and E8, we get an

explicit equation of exp
π
√−1
24

and exp
π
√−1
60

respectively. Their validity is equiv-

alent to flatness of Ocneanu’s connection, and numerical experiment on a computer

strongly suggests that the equations are valid, but they are too complicated to be

verified by hand. A good symbolic manipulation program may prove them, but so

far the author has been unable to prove the validity. By these, we can certainly

show that for each of E6 and E8, there are either two (and only two) subfactors or

no subfactors. For E6, Bion-Nadal announced a construction [2], thus the first case

holds in this case.

Though the motivation of the author for this study comes from the theory of

operator algebras, none of the proofs in this paper use operator algebraic results

except for a single point (at the beginning of §4), so the author hopes that this

paper may be of interest to non-operator algebraists. For example, relation of this

topic to conformal field theory is discussed in Roche [20].

The author is indebted very much to Professor A. Ocneanu for exposition of his

striking theory. The author learned the theory from his lectures at University of

Warwick in the summer of 1987, ones at the University of Tokyo in the summer

of 1990, and personal conversations during his stay in Japan. (The lectures at

Warwick roughly correspond to [16] and the ones at Tokyo were complied to the

lecture notes [17] by the author.) The author thanks Professor Ocneanu very much
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for all of these. He also thanks Professors M. Choda, D. Evans, and T. Miwa for

comments on the preprint of this paper about duality of graphs [3], orbifold models,

and crossing symmetry, respectively.

Further applications of this orbifold methods are given in [4] and [9].

After the circulation of the preprint version of this paper, the author received

a paper of M. Izumi [7] in which he also proves impossibility of Dodd and E7

as a principal graph by a different method based on Longo’s theory [14, 15] and

fusion rules. Furthermore, after the submission of this paper, a preprint of Sunder-

Vijayarajan [21] was circulated and it gave a similar proof to Izumi’s based on

bimodule approach independently. (Impossibility proof along this line was also

claimed by A. Ocneanu without a proof in his Tokyo lectures.) But it seems that

one cannot prove a realization of D2n as a paragroup with fusion rules.

§1 Basics from Ocneanu’s theory.

Here we review some of the basics of Ocneanu’s theory for the convenience of

readers and for fixing notations of connections. References for this section are [16,

17, 20], though our notations are often slightly different from those in [16].

We have four finite graphs G1,G2,G3,G4 with the following properties: (1) Each

graph is bipartite, that is, the vertices are divided into even ones and odd ones.

(2) Perron-Frobenius eigenvalues of the adjacency matrices coincide for G2 and G4

and for G1 and G3. (3) Even vertices of G2 and G1 coincide, odd vertices of G2 and

G3 coincide, even vertices of G3 and G4 coincide, and odd vertices of G4 and G1

coincide. (In the next section and later in this paper, we work on the case where

all of Gj are the same and one of the Dynkin diagrams An,Dn, E6, E7, E8.)
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Take a diagram

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

,

where ξj ’s satisfy one of the following




ξ1 ∈ G1, ξ2 ∈ G2, ξ3 ∈ G3, ξ4 ∈ G4, or

ξ1 ∈ G3, ξ2 ∈ G2, ξ3 ∈ G1, ξ4 ∈ G4, or

ξ1 ∈ G1, ξ2 ∈ G4, ξ3 ∈ G3, ξ4 ∈ G2, or

ξ1 ∈ G3, ξ2 ∈ G4, ξ3 ∈ G1, ξ4 ∈ G2,

and a = s(ξ2) = s(ξ1), b = r(ξ2) = s(ξ3), c = r(ξ1) = s(ξ4), d = r(ξ3) = r(ξ4).

(Here s(ξj) and r(ξj) mean the source and range of an edge ξj, that is, the starting

point and the ending point.) We call such a diagram cell. A connection W is an

assignment of a complex number to each cell, and we write

W




a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d


 ∈ C.

This is an analogue of a Boltzmann weight in solvable lattice model theory. If no

confusion arises, we just write a cell without mentioning W to denote the value of

the connection. We also make the following conventions.

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

=

b
ξ2←−−−− a

ξ3

� �ξ1

d ←−−−−
ξ4

c

=

c
ξ4−−−−→ d

ξ1

 ξ3

a −−−−→
ξ2

b

=

d
ξ4←−−−− c

ξ3

 ξ1

b ←−−−−
ξ2

a

.
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We also require the following renormalization rule.

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

=

√
µ(b)µ(c)
µ(a)µ(d)

b
ξ̃2−−−−→ a

ξ3

� �ξ1

d −−−−→
ξ̃4

c

=

√
µ(b)µ(c)
µ(a)µ(d)

c
ξ4−−−−→ d

ξ̃1

� �ξ̃3

a −−−−→
ξ2

b

,

where the notation ξ̃j means the edge with its orientation reversed and µ(·) denotes

an entry of the Perron-Frobenius eigenvector of the adjacency matrix of each graph.

Though the Perron-Frobenius eigenvector is determined only up to a positive scalar,

it does not matter because µ(·) always appears on denominators and numerators

at the same time. Note that this is an analogue of crossing symmetry in solvable

lattice model theory [1]. (That is, commuting squares arising from the higher

relative commutants correspond to crossing symmetry and more general commuting

squares correspond to the second inversion relations in solvable lattice model theory.

See [1] and [4].)

The biunitarity axiom states the following identities.

∑
b,ξ2,ξ3

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

·
b

ξ2←−−−− a

ξ3

� �η1

d ←−−−−
η4

c′
= δξ1,η1δξ4,η4δc,c′,

for each fixed a, c, d, c′, ξ1, ξ4, η1, η4, and

∑
c,ξ1,ξ4

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

·

b′
η2←−−−− a

η3

� �ξ1

d ←−−−−
ξ4

c

= δξ2,η2δξ3,η3δb,b′,
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for each fixed a, b, d, b′, ξ2, ξ3, η2, η3. The prefix “bi-” means that there are two

kinds of unitary matrix, that is, ξ1 ∈ G1, ξ2 ∈ G2, ξ3 ∈ G3, ξ4 ∈ G4 and ξ1 ∈ G3, ξ2 ∈

G2, ξ3 ∈ G1, ξ4 ∈ G4. (The other two cases follow from these two.) This corresponds

to unitarity, or the first inversion relations, in solvable lattice model theory [1]. In

the rest of this paper, we mean by “connection” a biunitary connection, that is, a

connection satisfying this axiom.

Remark. The renormalization convention here is slightly different from that in

[16] and the same as in [17]. In [20], there is no renormalization rule, and instead,

Roche has Condition T in [20, page 404]. His Condition T corresponds to the second

inversion relations and it follows from our biunitarity and the renormalization rule.

We choose the distinguished point ∗ among the even vertices of G1. For the

above system, we can construct a double sequence of string algebras starting from

∗:
A0,0 ⊂ A0,1 ⊂ · · · → A0,∞
∩ ∩ ∩

A1,0 ⊂ A1,1 ⊂ · · · → A1,∞
∩ ∩ ∩
...

...
...

↓ ↓
A∞,0 ⊂ A∞,1 ⊂ · · ·

(See definitions in [16, page 128] or [17, II.1–2] for more details.) Here several kinds

of strings are identified by a connection W . For example, there are two kinds of

expressions for strings in A1,1. The connection W induces the identification using

the unitary matrix in the biunitarity axiom. (See [16, page 130], [17, II.2], or

[20, page 403] for details.) A trace compatible with the above embeddings can be

defined, and A0,∞, etc., are the GNS-completion with respect to this trace. (See [16,
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page 129], [17, II.1], or [20, page 404] for this trace.) This inclusion A0,∞ ⊂ A1,∞

is the string model subfactor of Ocneanu.

We also write a large diagram as follows.

· ξ+−−−→ · −−−→ · · · · −−−→ ·
η+

� �η−

· ·� �
...

...
· ·� �
· −−−→

ξ−
· −−−→ · · · · −−−→ ·

This means the following. We make all the possible fillings of cells for this diagram

as follows.

· ξ+−−−→ · −−−→ · · · · −−−→ ·
η+

� � � �η−

· −−−→ · −−−→ · · · · −−−→ ·� � � �
...

...
...

...
· −−−→ · −−−→ · · · · −−−→ ·� � � �
· −−−→

ξ−
· −−−→ · · · · −−−→ ·

Such a choice is called a configuration. We multiply the connection values of all

the cells in a configuration and sum them over all the configurations. This is the

value assigned to the above large diagram, and we mean this value by the diagram.
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This is an analogue of a partition function in solvable lattice model theory. If we

need to specify a connection W explicitly, we write W (·) outside of the diagram.

Note that by our convention we get

a −−−−→ b 
c −−−−→ d

=

a ←−−−− b� �
c ←−−−− d

=

√
µ(a)µ(d)
µ(b)µ(c)

a −−−−→ b� �
c −−−−→ d

.

(We drop labels for edges if no confusion arises.) If we apply this rule to a large

diagram, the coefficients
√

µ(·) cancel out except for the terms for four corners.

That is, if we reverse the orientations of all the horizontal [resp. vertical] edges,

the connection value for the diagram changes by a positive scalar depending on the

four corners. This fact will be used in the rest of this paper very frequently.

Ocneanu has defined the Galois functor in [16, 17] which assigns a biunitary

connection on a graph to each subfactor with finite index. In this construction, the

graphs G1 and G2 are the same and also G3 and G4 are the same. In the case where

the index is less than 4, we moreover have all the four graphs are the same, and it

is one of the Dynkin diagrams An,Dn, E6, E7, E8. (It is the principal graph of the

subfactor.)

On the vertical string algebras of the graph G1, we define the n-th Jones projec-

tion by the following formula as in [17, II.3].

en =
∑

|α|=n−1
|v|=|w|=1

µ(r(v))1/2µ(r(w))1/2

βµ(r(α))
(α · v · ṽ, α · w · w̃),
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where β is the Perron-Frobenius eigenvalue of the graph, α is any path from ∗, and

v,w are chosen so that the compositions are possible, and | · | denote the length of

a path. This satisfies the ordinary properties of the Jones projection in [10].

This en is in An+1,0. If we embed this into An+1,k and move it by identification

using W , we get the following form.

∑
x

∑
s(ξ)=∗,r(ξ)=x

|ξ|=k

(ξ, ξ) ·
∑

|α|=n−1,s(α)=x
|v|=|w|=1

µ(r(v))1/2µ(r(w))1/2

βµ(r(α))
(α · v · ṽ, α · w · w̃),

where x is any even [resp. odd] vertex of G2 when k is even [resp. odd], v,w are

chosen so that the compositions are possible, ξ is any horizontal path, and α, v,w

are vertical paths. This statement can be proved by biunitarity, the renormalization

rule, and graphical method, because the coefficients of the definition of the Jones

projection are exactly ones in the renormalization rule. (See [17, II.5] for a proof.

Also see [20, Appendix] for the graphical method.) The above form means that

each en commutes with all the horizontal strings. This fact is quite important and

will be used in this paper repeatedly. Similar statement holds for the horizontal

Jones projections.

§2 Flatness of biunitary connections.

A biunitary connection arising from a subfactor via Galois functor satisfies an-

other important condition called flatness. We explain this key notion “flatness”

of Ocneanu’s entire theory in this section. In this section and the next, there are

some overlaps with writing of the author in [17], because the author thinks that
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it will be helpful for the reader. Consider a connection and choose the two distin-

guished points ∗ among the even vertices of G1 and G3 respectively. The connection

(with the choice of ∗) is said to be flat if it satisfies one of the following equiva-

lent conditions for the the string algebra double sequence and that with G1 and G3

interchanged. (In this paper, we work mainly on the Dynkin diagrams, and then

G1 = G3.)

Theorem 2.1. The following conditions are equivalent.

(1) In the string algebra double sequence, any two elements x ∈ A∞,0, the vertical

string algebra, and y ∈ A0,∞, the horizontal string algebra, commute.

(2) For each vertical string ρ = (ρ+, ρ−) ∈ Ak,0, we get

∗ ξ−−→ · · · −−→ ·
ρ+

� �σ+

...
...� �

· · 
...

...

ρ−
 σ−

∗ −−→
η
· · · −−→ ·

= δξ,ηCρ,σ,

where Cρ,σ ∈ C depends only on ρ, σ = (σ+, σ−).
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(2)′ For each horizontal string ρ = (ρ+, ρ−) ∈ A0,k, we get

∗ ρ+−−→ · · · −−→ · ←−− · · · ρ−←−− ∗
ξ

� �η

...
...� �

· −−→
σ+

· · · −−→ · ←−− · · · ←−−
σ−

·

= δξ,ηCρ,σ,

where Cρ,σ ∈ C depends only on ρ, σ = (σ+, σ−).

(3) For any horizontal paths ξ+, ξ− and vertical paths η+, η− with all the sources

and ranges equal to ∗, we get

∗ ξ+−−→ · · · −−→ ∗
η+

� �η−

...
...� �

∗ −−→
ξ−
· · · −−→ ∗

= δξ+,ξ−δη+,η−.

(3)′ For any horizontal path ξ and vertical path η with s(ξ) = r(ξ) = s(η) =

r(η) = ∗, we get

∗ ξ−−→ · · · −−→ ∗
η

� �η

...
...� �

∗ −−→
ξ
· · · −−→ ∗

= 1.
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Proof. (1) ⇔ (2) : Let m = |ξ| = |η| in (2). The condition (2) exactly means

ρ ∈ Ak,m∩A′
0,m via identification using the connection. Because k,m are arbitrary,

we get equivalence of (1) and (2).

(1)⇔ (2)′ : Same as above.

(2), (2)′ ⇒ (3) : Suppose η+ �= η−. Because s(ξ+) = r(ξ+) = s(ξ−) = r(ξ−) = ∗,

we can write ξ+ = ρ+ · ρ̃− and ξ− = σ+ · σ̃− with s(ρ+) = s(ρ−) = s(σ+) = s(σ−) =

∗. Then by (2)′, we get

∗ ρ+−−→ · · · −−→ · ←−− · · · ρ−←−− ∗
η+

� �η−

...
...� �

· −−→
σ+

· · · −−→ · ←−− · · · ←−−
σ−

·

= 0.

This implies the left hand side of the identity in (3) is 0. Similarly, if ξ+ �= ξ−, then

the formula is 0.

Suppose ξ+ = ξ− and η+ = η−. Write ξ = ρ+ · ρ̃− with s(ρ+) = s(ρ−) = ∗ as

above. Set

C =

∗ ρ+−−→ · · · −−→ · ←−− · · · ρ−←−− ∗
η+

� �η−

...
...� �

· −−→
ρ+

· · · −−→ · ←−− · · · ←−−
ρ−

·

.

By (2)′, this C does not depend on η+(= η−). Let p =
∑

ζ1,ζ2
(ζ1, ζ1) · (ζ2, ζ2),

where ζ1, ζ2 are any vertical path and horizontal path with s(ζ1) = r(ζ1) = s(ζ2) =
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∗, r(ζ2) = r(ρ+), |ζ1| = |η+|, |ζ2| = |ρ+|. This p is a projection commuting

with ρ and we know that pρ = C
∑

ζ(ζ, ζ) · ρ, where ζ is any vertical path with

s(ζ) = r(ζ) = ∗, |ζ | = |η+|. Because ρ is a partial isometry, we get |C | = 1, 0.

Because C does not depend on the choice of η+, η−, we set η+ = η− = σ · σ̃, where

σ is any path. Then we get C ≥ 0, hence C = 1, 0. If C = 0, we get

∗ ρ+−−→ · · · −−→ · ←−− · · · ρ−←−− ∗
σ

� �σ

...
...� �

· −−→ · · · −−→ · ←−− · · · ←−− ·

,

for all σ with |σ| = |η+|/2 and s(σ) = ∗. This means that a non-zero element ρ

is identified with 0 via connection, which is a contradiction. Thus we get C = 1,

which immediately implies the desired conclusion.

(3)⇒ (2) : Suppose ξ �= η in the formula in (2). Then applying condition (3) to

the diagram

∗ ξ−−→ · · · −−→ · ←−− · · · ξ←−− ∗
ρ+

� �ρ+

...
...

· ·
...

...

ρ̃−

� �ρ̃−

∗ −−→
η
· · · −−→ · ←−− · · · ←−−

η
∗

,
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we get the left hand side of the identity in (2) is 0 for all σ+, σ−. Now we fix ξ, η

with s(ξ) = s(η) = ∗, r(ξ) = r(η). Then it is enough to show that

∑
σ+,σ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ ξ−−→ · · · −−→ ·
ρ+

� �σ+

...
...� �

· ·� �
...

...

ρ̃−

� �σ̃−

∗ −−→
ξ
· · · −−→ ·

−

∗ η−−→ · · · −−→ ·
ρ+

� �σ+

...
...� �

· ·� �
...

...

ρ̃−

� �σ̃−

∗ −−→
η
· · · −−→ ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= 0.

Expanding the left hand side, we get 1 + 1 − 1 − 1 = 0. Indeed, for example, the

first 1 is obtained as

∗ ξ−−→ · · · −−→ · ←−− · · · ξ←−− ∗
ρ+

� �ρ+

...
...

· ·
...

...

ρ̃−

� �ρ̃−

∗ −−→
ξ
· · · −−→ · ←−− · · · ←−−

ξ
∗

(3)⇒ (3)′ : Trivial.
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(3)′ ⇒ (3) : Fix η+, ξ−. By unitarity, the sum of the squares of the absolute

values of the left hand side of the identity in (3) for all ξ+, η− is 1. By (3)′, all the

terms except for ξ+ = ξ− and η− = η+ are zero. Q.E.D.

Remark 2.2. Condition (3) was used as the definition of flatness by Ocneanu in

[16, page 153] under the name “parallel transport axiom”. Condition (3) can be

written in the following form:

∗ ρ+−−→ · · · −−→ · ←−− · · · ρ−←−− ∗
ξ

� �η

...
...� �

· −−→
σ+

· · · −−→ · ←−− · · · ←−−
σ−

·

= δξ,ηδρ,σ ,

where ρ = (ρ+, ρ−) and σ = (σ+, σ−). This means the string ρ does not change

its form in the transport. (See [17, II.5] for definitions of transport.) This is the

reason Ocneanu calls this condition flatness in analogy to the flatness in differential

geometry. Condition (2) was mentioned in [16, page 128] and equivalence between

(2) and (3) was mentioned in [16, page 154] without proof. Condition (1) is by the

author and was inserted in [17, II.5] by the author. Note that flatness depends on

the choice of ∗.

Significance of flatness in the theory of operator algebras is as follows. If we

apply the Galois functor to a subfactor N ⊂ M to get a graph and a connection

and apply the string algebra construction, the higher relative commutant N ′ ∩Mk

is contained in Ak+1,0 by Ocneanu’s compactness argument [17, II.6]. But we get
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the equality N ′ ∩Mk = Ak+1,0 by counting the dimensions of the both hand sides.

(Note that we have an anti-isomorphism as in [16, page 135].) This is flatness.

Similarly we get the other flatness for the case G,H interchanged.

Moreover, if we have a (not necessarily flat) connection on a finite graph, we still

can construct a subfactor by the string algebra construction, and then the tower of

the relative commutants of this subfactor is obtained as the “flat part” of the string

algebras. (See [17, II.6] for more precise statement and a proof.) In particular, if

we start with a flat connection, we get back the original graph as an invariant. This

fact was stated as the Range Theorem in [17].

The vertical [resp. horizontal] Jones projections commute with horizontal [resp.

vertical] strings as noted in §1. Thus for the Jones projections, condition (1) is

satisfied. This fact is referred to as flatness of the Jones projections. The depth of

a graph with ∗ is defined to be the biggest distance from ∗ to a vertex on the graph.

It is well known that if k ≥ depth, then Ak+1,0 is generated by Ak,0 and the k-th

vertical Jones projection. (A similar statement holds for A0,k .) Thus, for checking

flatness, it is enough to check the identities in (2) for the diagrams with size less

than (depth)×2(depth), and similarly it is enough to check the identities in (3) for

the diagrams with size less than 2(depth)× 2(depth). This implies that whether a

given connection on a finite graph is flat or not can be determined by finite times

of computations. Moreover, the Bratteli diagram for Ak,0 ⊂ Ak+1,0 consists of a

reflection of that for Ak−1,0 ⊂ Ak,0 and a new part. Because the reflection part is

spanned by Ak,0 and the Jones projection, we only need to check flatness for the

new part. This is what the remark in [17, page 154] means.

We show an example of a flat connection corresponding to finite groups. (See

[17, I.3] and [16, page 142].)
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Example 2.3. Let G be a finite group and n its order. Then we get a flat connec-

tion from a subfactor R ⊂ R � G, where R is the AFD factor of type II1 and we

make a crossed product from an outer action of G. This connection is described as

follows.

The graph G1 = G2 has a single odd vertex x and its has n even vertices, which

are labeled by g ∈ G. The vertex labeled by 1, the multiplication unit, is the

vertex ∗. Each even vertex is connected to x by a single edge. The graph G3 = G4

has a single odd vertex x and its even vertices are labeled by (equivalence classes

of) irreducible representations of G. Each even vertex σ is connected to x by |σ|

edges, where |σ| denotes the dimension of the irreducible representation σ. The

Perron-Frobenius eigenvector µ is given by µ(x) =
√

n, µ(g) = 1, µ(σ) = |σ|, and

the connection is given by

g −−−−→ x� �j

x −−−−→
i

σ

= σij(g).

It is easy to see this satisfies biunitarity axiom. Take the following 2× 2-cell.

g1 −−→ x −−→ g2� �
x x� �
g4 −−→ x −−→ g3
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If we fix a center vertex σ for this diagram, the sum of the products of connection

values for all the configurations is given by

∑
i,j,k,l

σij(g1)σkj(g2)σkl(g3)σil(g4) · |σ|
n

=
∑

i,j,k,l

σij(g1)σjk(g−1
2 )σkl(g3)σli(g−1

4 ) · |σ|
n

=
|σ|
n

Tr(σ(g1g
−1
2 g3g

−1
4 )).

Now we let σ vary, then we get the value

∑
σ

|σ|
n

Tr(σ(g1g
−1
2 g3g

−1
4 )) = δg1g−1

2 g3g−1
4 ,1

for the above diagram by orthogonal relations in representation theory of finite

groups. Because our graph has depth 2, we only need to check the following iden-

tities for all g, h, k, l ∈ G with h �= k in order to verify flatness.

1 −−→ x −−→ g ←−− x ←−− 1� �
x x� �
h −−→ x −−→ l ←−− x ←−− k

= 0.

This easily follows from the above computation for 2 × 2-cells. If we interchange

the two graphs, a similar computation works. Thus this connection is flat.

§3 Biunitary connections on the Dynkin diagrams.
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The contents of this section are essentially included in [16, 17]. We just work

out details for the Dynkin diagram cases. With Ocneanu’s general method in [17],

the materials here are rather easy.

In this section and later, all the four graphs in the string algebra construction

are the same and one of the Dynkin diagrams An,Dn, E6, E7, E8.

Ocneanu has claimed the following theorem in [16]. (Definition of equivalence of

connections is given in [16, 17].)

Theorem 3.1. On each An, there is only one connection up to equivalence. On

each Dn, there are two connections up to equivalence, and these two are equivalent

up to a graph isomorphism, the flip of the fork. On each of E6, E7, E8, there are

two connections up to equivalence.

Here we give details of its proof. As pointed out by Ocneanu, the point is that

the biunitarity axiom is strong enough to determine the connection if size of the

unitary matrix is less than or equal to 3, that is, the graph has at most triple points.

By this general remark, we can conclude that the number of equivalence classes of

biunitary connections on each of the Dynkin diagrams is at most two. On the

other hand, Ocneanu has shown two connections explicitly on each of the Dynkin

diagrams. The only problem we have to work is that these two are equivalent or

not.

Proof of Theorem 3.1. First we show existence of a connection. As in [16, page

159] and [17, IV.2], we set

i −−−−→ l� �
k −−−−→ j

= δklε +

√
µ(k)µ(l)
µ(i)µ(j)

δij ε̄,
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where ε =
√−1 exp

π
√−1
2N

and N is the Coxeter number. (Note that we fix an

identification of the four graphs, though it is not canonical.) It is easy to see

that this is indeed a connection. (For unitarity, we use ε2 + ε̄2 + β = 0, where

β is the Perron-Frobenius eigenvalue. See [17, IV.2].) Changing ε to ε̄, we get

another solution. (As noted in [17], this solution works even when β = 2 if we set

N =∞, ε =
√−1.)

For An, we can determine the connection up to gauge choice, which is the equiv-

alence relation, one by one from the endpoint as in [17, IV.2]. This procedure works

until one meets a triple point. (It is an advantage of Ocneanu’s approach over the

commuting square picture that one-by-one construction like this is possible.)

Let

b1— a
|
b2

...

—b3 · · ·

be one of the graphs Dn, E6, E7, E8, that is the vertex a is the triple point. By an

appropriate choice of gauges, we have a 3× 3-unitary matrix




µ(b1)
µ(a)

√
µ(b1)µ(b2)

µ(a)

√
µ(b1)µ(b3)

µ(a)√
µ(b1)µ(b2)

µ(a)
x y√

µ(b1)µ(b3)
µ(a)

y z




,

where |y| =

√
µ(b2)µ(b3)

µ(a)
, x, y, z ∈ C. (See [17, IV.2, IV.4].) The problem is

whether a choice of x, y, z is possible or not. Setting xi =
µ(bi)
µ(a)

, i = 1, 2, 3, we get
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|x| = √
1− x2(x1 + x3), |y| = √x2x3 by unitarity. Because the other condition for

unitarity is

x1
√

x2 +
√

x2x +
√

x3y = 0,

the number of equivalence classes of possible unitary matrices is 2 if and only if we

have √
1− x2(x1 + x3) + x3 > x1 > |x3 −

√
1− x2(x1 + x3)|.

For E6, E7, E8, we can check this inequality by direct computation. For Dn, we

can set µ(b1) = µ(b2) = 1/2, µ(a) = β/2, µ(b3) = β2/2− 1, where β is the Perron-

Frobenius eigenvalue of the Dn, that is, β = 2 cos
π

2n− 2
. The above inequality in

this case is √
1− 1

β

(
1
β

+
β2 − 1

β

)
+

β2 − 2
β

>
1
β

>

√
β2 − 3
β

,

and this is valid because β2 > 2. Thus all of Dn, E6, E7, E8 have two solutions at

the triple point. Because we already know existence of a connection, we conclude

that each of the above indeed has two mutually conjugate connections. We have

exhibited two mutually conjugate solutions above, so these are the only connections

up to the equivalence relation.

Now for proving the assertion on the flip of Dn. We choose the other endpoint

than the two endpoints on the fork as the starting point and apply the method of

determining a connection in the An diagrams until one meets the triple point. We

can choose a real connection there. Then at the triple point, we have a 3×3-unitary

matrix again as above, though (1,1)-entry is different from the above now. Then
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we get x = ȳ = z in the above 3× 3-matrix. Thus two connections are the same up

to the flip. Q.E.D.

We will use the notation W for the above connection on the Dynkin diagrams.

Remark 3.2. If all the four graphs in the string algebra construction are the

same, the contragredient map is trivial, the graph has a triple point, the graph

has no cycles, and the Perron-Frobenius eigenvalue is bigger than 2, there are no

connections on it. This is due to Ocneanu, and his proof is given in [17, IV.4].

Remark 3.3. If the graph is one of the extended Dynkin diagrams E
(1)
6 , E

(1)
7 , E

(1)
8 ,

the above method still applies. In these cases, we get an equality instead of the

strict inequality in the above proof. Thus we have only one biunitary connection on

each graph, hence the number of subfactors with principal graphs E
(1)
6 , E

(1)
7 , E

(1)
8

is at most one. This is an unpublished result of Ocneanu, which is used in [19,

Corollaire 1 (iii)].

In the rest of this paper, we will work on flatness of the connections on the

Dynkin diagrams. The results suggest that flatness is a very strong condition while

biunitarity is not so strong if graphs are appropriately chosen. In a subfactor

context, it means that constructions of irreducible subfactors with finite index are

much easier than those of subfactors with finite (or amenable) depth.

§4 Properties of connections on the Dynkin diagrams An

The string algebras for An with one of the endpoints to be ∗ are generated by

the Jones projections as noted by the original work of Jones [10, §5.2], thus flatness
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is trivial, and corresponding subfactor classification is already noted by Popa [18,

Corollary 6.7].

If we choose a point which is not an endpoint as ∗, the connection is not flat.

Indeed, suppose it is flat. Then the string algebra double sequence gives a subfactor

N ⊂M with Jones index [M : N ] = 4 cos2
π

N
< 4, where N is the Coxeter number.

(See [17, II.2].) Let k be the number of vertices connected to ∗. Now we have

k > 1 because ∗ is not an endpoint. By flatness of the connection, the relative

commutant is given by N ′ ∩M = Ck. (This follows from Ocneanu’s computation

of the tower of relative commutants based on compactness argument. See [17, II.6]

for the proof.) But it was proved by Jones [10, Corollary 2.2.4], as well-known, that

if [M : N ] < 4, then N ′ ∩M = C, which is a contradiction. This argument also

works for Dn, E6, E7, E8. We get the following theorem.

Theorem 4.1. Each An has one flat connection. Though there are two choice

of ∗, the two are isomorphic up to a graph isomorphism. Thus there is only one

subfactor having An as its principal graph for each n.

This statement for subfactors is already obtained in [18, Corollary 6.7]. Thus it

is over about An. But in the next section, we will reduce the problem of flatness

of the diagrams Dn to the An diagrams by orbifold method, and need a technical

equality for connections on the An diagrams. We state the equality and prove it

here. This is the most technical part of this paper as well as the next section and

will show why the difference between Deven and Dodd arises.
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We use the following numbering of the vertices of the diagram An and let W be

the connection on it as defined in §3.

An : 0 — 1 · · · n− 2 — n− 1

We will need the following proposition in the next section for Dn.

Proposition 4.2. For each connection W on A2m+1, we have the following equal-

ity.

0 −−→ 1 −−→ · · · −−→ 2m− 1 −−→ 2m� �
1 2m− 1� �
...

...� �
2m− 1 1� �

2m −−→ 2m− 1 −−→ · · · −−→ 1 −−→ 0

= (−1)m.

The left hand side here is given by a complicated formula involving many complex

numbers. To determine its value, we first show that the value has modulus 1, then

we show that the value is real, and finally we determine the sign. We need a lemma

at first.
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Lemma 4.3. The connection W on An can be written as follows.

j −−−−→ j ± 1� �
j ∓ 1 −−−−→ j

=

√
µ(j + 1)µ(j − 1)

µ(j)
ε̄, j = 1, . . . , n− 2,

j −−−−→ j + 1� �
j + 1 −−−−→ j

= (−1)j+1 µ(0)
µ(j)

ε̄2j+3, j = 0, . . . , n− 2,

j −−−−→ j − 1� �
j − 1 −−−−→ j

= (−1)j µ(0)
µ(j)

ε2j+1, j = 1, . . . , n− 1,

j ± 1 −−−−→ j� �
j −−−−→ j ∓ 1

= ε, j = 1, . . . , n− 2,

Proof. Just by direct computation using µ(j) = sin
j + 1
N

, where N = n + 1, the

Coxeter number. Q.E.D.

We would like to change W to be real by gauge choice. The following choice is

used.
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Lemma 4.4. For each edge e on An, we assign a complex number ϕ(e) as follows.

ϕ(j + 1 −→ j) = δ−2j−3, j = 0, . . . , n− 2

ϕ(j −→ j − 1) = δ−2j−1, j = 1, . . . , n− 1

ϕ(j − 1 −→ j) = δ2j+1, j = 1, . . . , n− 1

ϕ(j −→ j + 1) = δ2j+3, j = 0, . . . , n− 2,

where δ = exp(π
√−1/4N), N = n + 1. Then this satisfies ϕ(ẽ) = ϕ(e), where ẽ is

the edge e with the orientation reversed. And a new connection W ′ defined by

W ′




i −−−−→ l� �
k −−−−→ j


 = ϕ(l −→ i)ϕ(k −→ j)W




i −−−−→ l� �
k −−−−→ j




is real and satisfies the following.

j −−−−→ j ± 1� �
j ∓ 1 −−−−→ j

=

√
µ(j + 1)µ(j − 1)

µ(j)
, j = 1, . . . , n− 2,

j −−−−→ j + 1� �
j + 1 −−−−→ j

= (−1)j+1 µ(0)
µ(j)

, j = 0, . . . , n− 2,

j −−−−→ j − 1� �
j − 1 −−−−→ j

= (−1)j µ(0)
µ(j)

, j = 1, . . . , n − 1,
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j ± 1 −−−−→ j� �
j −−−−→ j ∓ 1

= 1, j = 1, . . . , n − 2,

Proof. Direct computation using δ2 = ε shows the desired result easily. Q.E.D.

The reason for the choice of the above W ′ is as follows.

Lemma 4.5. We have the following equality.

W




0 −−→ 1 −−→ · · · −−→ 2m− 1 −−→ 2m� �
1 2m− 1� �
...

...� �
2m− 1 1� �

2m −−→ 2m− 1 −−→ · · · −−→ 1 −−→ 0




=(−1)mW ′




0 −−→ 1 −−→ · · · −−→ 2m− 1 −−→ 2m� �
1 2m− 1� �
...

...� �
2m− 1 1� �

2m −−→ 2m− 1 −−→ · · · −−→ 1 −−→ 0




.
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Proof. For each configuration, values of ϕ inside of the big square cancel out. Thus

we only need to compute the product of ϕ for edges on the top and the bottom

horizontal edges. It is equal to

ϕ(2m −→ 2m− 1)2 · · ·ϕ(1 −→ 0)2

=δ2((−4m−1)+···+(−7)+(−5)+(−3)) = δ−8m(m+1)

=exp(−8m(m + 1)π
√−1/8(m + 1))

=(−1)m,

because the Coxeter number is 2m + 2. Q.E.D.

The above lemma shows why the factor (−1)m arises in Proposition 4.2. Now

all we have to prove for Proposition 4.2 is the equality

W ′




0 −−→ 1 −−→ · · · −−→ 2m− 1 −−→ 2m� �
1 2m− 1� �
...

...� �
2m− 1 1� �

2m −−→ 2m− 1 −−→ · · · −−→ 1 −−→ 0




= 1

We prove the following lemma, which is a stronger version of the proposition. (In-

deed, the following lemma with k = 0 implies the proposition because of the renor-

malization rule and the equality µ(2m) = µ(0).
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Lemma 4.6. For the connection W ′ on A2m, we have the equality

W ′




2m −−→ 2m− 1 −−→ · · · −−→ k + 1 −−→ k� �
2m− 1 k + 1� �

...
...� �

k + 1 2m− 1� �
k −−→ k + 1 −−→ · · · −−→ 2m− 1 −−→ 2m




= 1.

(The diagram is of size (2m− k)× (2m− k).)

We will prove this lemma by induction on k. For it, we need two lemmas.

Lemma 4.7. For any connection on any graph, we get the following inequality.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· ξ1−−→ · · · −−→ ·
ξ6

� �ξ2

· ξ5−−→ · ·
ξ4

� �
...

...� �
· −−→ · −−→ · · · −−→

ξ3

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ 1.
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Proof. The square of the above value is bounded by the following diagram.

· ξ1−−→ · · · −−→ ·
ξ6

� �ξ2

· ξ5−−→ · ·
ξ4

� �
...

...� �
· · 
...

...

ξ4

 
· −−→

ξ5

· ·

ξ6

 ξ2

· −−→
ξ1

· · · −−→ ·

That is, this diagram is obtained by attaching the same diagram reversed vertically

to the original one and remove the middle horizontal arrow ξ3. Graphical method

using biunitarity gives the desired bound. (That is, if we let ξ4, ξ6 vary, then the

number gets bigger and this new sum is equal to 1 by biunitarity. See II.5 of [17]

or [20] for graphical method.) Q.E.D.
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Lemma 4.8. For any connection on An, we have the following equality.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n− 1 −−→ n− 2 −−→ · · · −−→ k + 1 −−→ k� �
n− 2 k + 1� �

...
...� �

k + 1 n− 2� �
k −−→ k + 1 −−→ · · · −−→ n− 2 −−→ n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1,

where k = 0, . . . , n− 2.

Proof. It is enough to show that the value of the diagram

n− 1 −−→ n− 2 −−→ · · · −−→ k ←−− · · · ←−− n− 2 ←−− n− 1� �
n− 2 n− 2� �

...
...� �

k −−→ k + 1 −−→ · · · −−→ n− 1 ←−− · · · ←−− k + 1 ←−− k

is equal to 1. Take a horizontal string

(n—n− 1— · · ·—k, n—n− 1— · · ·—k).
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This is a projection corresponding to the orthogonal of the algebra

〈e1, . . . en−k−3〉en−k−2〈e1, . . . en−k−3〉,

where ej is the j-th Jones projection on the horizontal string algebra with ∗ = n−1.

Thus if we embed this string to the algebra n− 1− k steps down and move it with

a connection, we get an operator of the form

∑
l

∑
|ξ|=n−1−k
s(ξ)=n−1

r(ξ)=l

(ξ, ξ) · pl,

where each ξ is a vertical path and pl is a projection orthogonal to

〈e(l)
1 , . . . e(l)

n−k−3〉e(l)
n−k−2〈e(l)

1 , . . . e(l)
n−k−3〉,

where e
(l)
j is the j-th Jones projection on the horizontal string algebra with ∗ = l,

by flatness of the Jones projections. Because the string

(k—k + 1— · · ·—n− 1, k—k + 1— · · ·—n− 1)

is a projection orthogonal to

〈e(k)
1 , . . . e(k)

n−k−3〉e(k)
n−k−2〈e(k)

1 , . . . e(k)
n−k−3〉,

the above number is 1. Q.E.D.
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Now we can give a proof of Lemma 4.6.

Proof of Lemma 4.6. We prove the lemma by induction on k. If k = 2m− 1, then

we get

W ′




2m −−−−→ 2m− 1� �
2m− 1 −−−−→ 2m


 = (−1)2mµ(0)/µ(2m) = 1.

Assuming the equality for k, we prove the equality for k − 1. In the diagram,

2m −−→ 2m− 1 −−→ · · · −−→ k − 1� � �
2m− 1 −−→ · −−→ · · · −−→ k� � �

...
...

...� � �
k − 1 −−→ k −−→ · · · −−→ 2m

the vertex · is either 2m or 2m− 2. Thus our number is the sum of two terms, one

with · = 2m and the other with · = 2m−2. Let denote these by A,B respectively. If

· = 2m, then the second rows and columns of the vertices are determined uniquely,

and the formulas for W ′ and the induction hypothesis imply that A > 0. By Lemma

4.4 and Lemma 4.8, we know that A + B = ±1 and |B| ≤ 1. Thus by A > 0, we

can conclude that A + B = 1 as desired. Q.E.D.

We show another lemma for the next section.
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Lemma 4.9. For each connection W on A2m+1, we have the following equalities.

0 −−→ 1 −−→ · · · m · · · −−→ 1 −−→ 0� �
1 1� �
...

...
m m...

...� �
2m− 1 2m− 1� �

2m −−→ 2m− 1 −−→ · · · m · · · −−→ 2m− 1 −−→ 2m

= 1,

2m −−→ 2m− 1 −−→ · · · m · · · −−→ 2m− 1 −−→ 2m� �
2m− 1 2m− 1� �

...
...

m m...
...� �

1 1� �
0 −−→ 1 −−→ · · · m · · · −−→ 1 −−→ 0

= 1,
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Proof. It is enough to prove the first equality. Because µ(0) = µ(2m), it is enough

to show

0 −−→ 1 −−→ · · · m · · · ←−− 1 ←−− 0� �
1 1� �
...

...
m m...

...� �
2m− 1 2m− 1� �

2m −−→ 2m− 1 −−→ · · · m · · · ←−− 2m− 1 ←−− 2m

= 1.

Then as in the proof of Lemma 4.8, we get the equality using the flatness of the

Jones projections. Q.E.D.

§5 Flatness of connections on the Dynkin diagrams Dn

Here we come to the main part of this paper. We will show that we have two

flat connections on the diagrams D2n and no flat ones on D2n+1.

First we show that if we choose the distinguished point ∗ to be one of the two

endpoints of the forked branches, then the connections are not flat, unless the graph

is D4. Number the vertices of Dn as follows. (This numbering is different from

that in the other places of this paper.)

Dn :
0 \
1 /2—3 · · · n− 1,
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Set the vertex 0 to be the ∗. The Perron-Frobenius eigenvector is chosen so that

µ(0) = 1, µ(1) = 1, µ(2) = β, µ(3) = β2 − 1, . . . , where β is the Perron-Frobenius

eigenvalue. We show that the following diagram

0 −−−−→ 2 −−−−→ 1 ←−−−− 2 ←−−−− 0� �
2 2� �
1 −−−−→ 2 −−−−→ 0 ←−−−− 2 ←−−−− 3

does not have value 0, which is enough for non-flatness by Theorem 2.1 (2)′. Note

that the middle vertical arrows should be 1→ 2→ 0, and we have three configura-

tions for each

0 −−−−→ 2 −−−−→ 1� �
2 2� �
1 −−−−→ 2 −−−−→ 0

,

1 ←−−−− 2 ←−−−− 0� �
2 2� �
0 ←−−−− 2 ←−−−− 3

,

that is, the center points in each 2 × 2-cell can be the vertices 0, 1, 3. A direct

computation using the definition of the connection W shows that the value for the

first 2 × 2-cell is −1 + 2 cos
2π

2n− 2
and the value for the second is

√
β2 − 2(−1 +

exp
−2π
√−1

2n− 2
). The first one is equal to 0 if and only if n = 4 and the second one

is never zero. Thus we get the desired non-flatness. The case ∗ = 1 can be proved

in the same way. (A recent result of M. Izumi [7, Theorem 5.1] rejects these two

cases more easily.)
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Next we consider the “right choice” of the ∗. Our idea is that we embed the

string algebra of Dn to the string algebra of A2n−3 with the double starting points.

(Note that these two have the same Coxeter number 2n− 2.) For this purpose, we

use the “cell system” given by Roche [20, page 407]. That is, if we have a connection

between two graphs, we can construct embedding of the two corresponding string

algebras as in [17, II.3] and [20, page 403]. The connection is explicitly given in

[20, page 407], but we list it here because our numbering system of the vertices is

different from that in [20] and we reverse the order of the two graphs. We will use

the following numbering of vertices of Dn and A2n−3.

Dn : 0′ — 1′ · · · n− 4′ — n− 3′/
n− 2′

\
n− 1′

A2n−3 : 0 — 1 · · · n− 2 — 2n− 4

The connection is given by the following.

j ′ −−−−→ j� �
j + 1′ −−−−→ j + 1

=

j ′ −−−−→ 2n− 4− j� �
j + 1′ −−−−→ 2n− 5− j

= 1, 0 ≤ j ≤ n− 3,

j + 1′ −−−−→ j + 1� �
j ′ −−−−→ j

=

j + 1′ −−−−→ 2n− 5− j� �
j ′ −−−−→ 2n− 4− j

= 1, 0 ≤ j ≤ n− 3,

n− 3′ −−−−→ n− 3� �
n− 2′ −−−−→ n− 2

=
1√
2
,

n− 3′ −−−−→ n− 1� �
n− 2′ −−−−→ n− 2

=
1√
2
,
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n− 3′ −−−−→ n− 3� �
n− 1′ −−−−→ n− 2

= − 1√
2
,

n− 3′ −−−−→ n− 1� �
n− 1′ −−−−→ n− 2

=
1√
2
,

n− 2′ −−−−→ n− 2� �
n− 3′ −−−−→ n− 3

= 1,

n− 2′ −−−−→ n− 2� �
n− 3′ −−−−→ n− 1

= 1,

n− 1′ −−−−→ n− 2� �
n− 3′ −−−−→ n− 3

= −1,

n− 1′ −−−−→ n− 2� �
n− 3′ −−−−→ n− 1

= 1.

In the above diagrams, the left vertical edges are in Dn, the right vertical edges

are in A2n−3, and the horizontal edges connect these two graphs. Because we

changed the order of the two graphs from that in [20], Roche’s condition C∗1,i =

1 ⇔ i = ∗2 in the last line of [20, page 401] is not satisfied. That is, our ∗ = 0′ of

Dn is connected to two vertices 0, 2n− 4 of A2n−3, but it does not matter.

We have string algebra double sequences for both Dn and A2n−3. By general

theory, it is easy to see that double sequence embeddings and the embedding given

by the above are compatible if the star triangle relation, as in [20, page 404, Propo-

sition 5] is satisfied.

Lemma 5.1. The connections W on Dn and A2n−3 given as in §3 and the con-

nections between Dn and A2n−3 given as above satisfy the star-triangle relation

mentioned above.
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Proof. We have to show that for each hexagon

↙→↘↘→↙

where the left two edges are in Dn, the right two edges are in A2n−3 and the

horizontal two edges connect these two graphs, the two ways of configurations ↘↙→

and →↙↘ give the same value. If the numberings of the right three vertices of the

hexagon are all less than n − 2 or all bigger than n − 2, then we get the equality

trivially, because the connecting cell values are all 1 and the corresponding vertices

have the same Perron-Frobenius eigenvector entries.

There are 34 hexagons involving the vertex n − 2 on A2n−3. For each case, we

can check the equality directly and easily. A typical computation example is given

below.

Let the left three vertices of the hexagon be n− 3′, n− 2′, n− 3′ on Dn from the

top to the bottom and the right three vertices of the hexagon are n− 1, n− 2, n− 1

on A2n−3 from the bottom to the top. Then there are two configurations for ↘↙→,

that is, the center point of the hexagon can be n− 2′ or n− 1′. The product of the

three cell values for the first configuration is equal to (ε +
µ(n− 2′)
µ(n− 3′)

ε̄) · 1√
2
· 1, and

the value for the second is

√
µ(n− 1′)µ(n− 2′)

µ(n− 3′)
· ε̄ · 1√

2
. On the other hand, there

is only one configuration for →↙↘, that is, the center point is n− 2. The value for

this configuration is
1√
2
·1 · (ε+

µ(n− 2)
µ(n− 1)

ε̄), which is equal to the sum of the above

two values. Q.E.D.
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Now we can embed the string algebra double sequence of Dn into that of A2n−3,

but note that the string algebras of A2n−3 have double starting points 0 and 2n−4

because the vertex ∗ = 0′ of Dn is connected to two points 0, 2n−4 of A2n−3. Thus

a general element in our string algebra A2n−3 is a linear combination of elements of

the form (ξ, η), where s(ξ), s(η) = 0, 2n− 4, and s(ξ) and s(η) does not have to be

equal. The operations are defined in the same way as in the ordinary string algebra.

(Because s(ξ) and s(η) can be different the name “string” may be inappropriate. If

one is unhappy with this, one can add an extra starting point ∗ and two paths from

∗ to 0 and ∗ to 2n− 4.) Note that this construction realizes the double sequence of

Dn as the fixed point algebras of the double sequence of A2n−3 with double starting

points by an automorphism of order 2 induced by the flip of the graph A2n−3.

For checking flatness of the connection on Dn, it is enough to see whether the

string (0′—1′— · · · n− 1′, 0′—1′— · · · n− 1′) in the vertical string algebra and the

same form of the string in the horizontal string algebra commute. (This is because

the Jones projections take care of the other parts. See a remark preceding Example

2.3.) We embed the both into A2n−3 algebra and check the commutativity in this

algebra. Then we get the strings ρ =
1
2
(ξ, ξ) +

1
2
(η, η)− 1

2
(ξ, η) − 1

2
(η, ξ), where

paths ξ, η are defined to be




ξ = 0—1— · · ·n− 2,

η = 2n− 4—2n− 3— · · ·n− 2,

on the A2n−3 string algebra. Thus we now have to see whether the above strings ρ

in the horizontal string algebra and the vertical string algebra commute. Now we

prove the next lemma.
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Lemma 5.2. The strings ρ in the vertical string algebra and in the horizontal

string algebras commute if and only if the real part of the value for the following

diagram is 1.

0 −−→ 1 −−→ · · · −−→ 2n− 5 −−→ 2n− 4� �
1 2n− 5� �
...

...� �
2n− 5 1� �
2n− 4 −−→ 2n− 5 −−→ · · · −−→ 1 −−→ 0

Proof. In order to simplify notations, we write m for n − 2. Let the strings ρ in

the vertical string algebra move to the horizontal one via connection W . Then by

Lemma 4.9 and unitarity, we get the equalities

0 −−→ 1 −−→ · · · x · · · ←−− 1 ←−− 0� �
1 1� �
...

...
m m...

...� �
2m− 1 2m− 1� �

2m −−→ 2m− 1 −−→ · · · m · · · ←−− 2m− 1 ←−− 2m

= 0,
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0 −−→ 1 −−→ · · · m · · · ←−− 1 ←−− 0� �
1 1� �
...

...
m m...

...� �
2m− 1 2m− 1� �

2m −−→ 2m− 1 −−→ · · · x · · · ←−− 2m− 1 ←−− 2m

= 0,

where x is a vertex different from m. Thus we get

0 −−→ · −−→ · · · −−→ x� �
1 ·� �
...

...
m ·...

... 
2m− 1 · 

2m −−→ 2m− 1 −−→ · · · −−→ m

= 0,
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and
0 −−→ 1 −−→ · · · −−→ m� �
1 ·� �
...

...
m ·...

... 
2m− 1 · 

2m −−→ · −−→ · · · −−→ x

= 0.

These imply that for checking of the commutativity, we only need to see commuta-

tivity of the horizontal strings ρ and the part of the vertical ρ of the following form

M2(C) ⊗ String(m)
m after identification using W . Here M2(C) is generated by the

matrix units (ξ, ξ), (ξ, η), (η, ξ), (η, η) in the horizontal string algebra and String(m)
m

is a vertical m-string algebra starting from the vertex m. Then it is easy to see that

the commutativity holds if and only if we have the following equalities for every

paths ξ, η with |ξ| = |η| = m, s(ξ) = s(η) = m, and r(ξ) = r(η).

0 −−→ 1 −−→ · · · −−→ m� �ξ

1 ·...
...

m x...
...

1 · η

0 −−→ 1 −−→ · · · −−→ m

=

2m −−→ 2m− 1 −−→ · · · −−→ m� �ξ

2m− 1 ·...
...

m x...
...

2m− 1 · η

2m −−→ 2m− 1 −−→ · · · −−→ m

,
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0 −−→ 1 −−→ · · · −−→ m� �ξ

1 ·...
...

m x...
...

2m− 1 · η

2m −−→ 2m− 1 −−→ · · · −−→ m

=

2m −−→ 2m− 1 −−→ · · · −−→ m� �ξ

2m− 1 ·...
...

m x...
...

1 · η

0 −−→ 1 −−→ · · · −−→ m

,

where we write x for r(ξ) = r(η). First, we show that the first equality is always

valid. To prove this, it is enough to show

∑
ξ,η

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −−→ 1 · · · −−→ m� �ξ

1 ·...
...

m x...
...

1 ·� �η̃

0 −−→ 1 · · · −−→ m

−

2m −−→ 2m− 1 · · · −−→ m� �ξ

2m− 1 ·...
...

m x...
...

2m− 1 ·� �η̃

2m −−→ 2m− 1 · · · −−→ m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= 0.

Expanding the left hand side, we get that it is equal to the following.

0 −−→ 1 −−→ · · ·m · · · ←−− 1 ←−− 0� �
1 1...

...
m m...

...
1 1� �
0 −−→ 1 −−→ · · ·m · · · ←−− 1 ←−− 0
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+

2m −−→ 2m− 1 −−→ · · ·m · · · ←−− 2m− 1 ←−− 2m� �
2m− 1 2m− 1...

...
m m...

...
2m− 1 2m− 1� �

2m −−→ 2m− 1 −−→ · · ·m · · · ←−− 2m− 1 ←−− 2m

−

0 −−→ 1 −−→ · · ·m · · · ←−− 2m− 1 ←−− 2m� �
1 2m− 1...

...
m m...

...
1 2m− 1� �
0 −−→ 1 −−→ · · ·m · · · ←−− 2m− 1 ←−− 2m

−

2m −−→ 2m− 1 −−→ · · ·m · · · ←−− 1 ←−− 0� �
2m− 1 1...

...
m m...

...
2m− 1 1� �

2m −−→ 2m− 1 −−→ · · ·m · · · ←−− 1 ←−− 0

.

Flatness of A2m+1 with ∗ = 0, 2m and the same argument as in the proof of Lemma

4.9 give that the above is equal to 1 + 1− 1− 1 = 0. The similar argument to the
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above shows that the second equality is equivalent to the following.

2− 2Re

0 −−→ 1 −−→ · · ·m · · · −−→ 2m− 1 −−→ 2m� �
1 2m− 1...

...
m m...

...
2m− 1 1� �

2m −−→ 2m− 1 −−→ · · ·m · · · −−→ 1 −−→ 0

= 0.

(We can reverse the orientation of the horizontal arrows in the right half by the

renormalization rule.) This is the desired formula. Q.E.D.

Now we can prove the following theorem.

Theorem 5.3. None of D2n+1 have flat connections. Each of D2n has two flat

connections, and these are equivalent up to a graph isomorphism fixing ∗. Thus

there are no subfactors having D2n+1 as principal graphs, and there is only one

subfactor having D2n as its principal graph for each n.

Proof. Now this is immediate by Theorem 3.1, Proposition 4.2, Lemma 5.2.

Q.E.D.

Remark 5.4. On a proof of flatness of the connections on D2n, Ocneanu mentioned

an outline as follows. (See [17, IV.3].) First one shows that

Re

0 −−→ · · · −−→ n− 2 ←−− · · · ←−− 0� �
...

...� �
n− 2 −−→ · · · −−→ · ←−− · · · ←−− n− 1

= 0

49



for all the Dn’s using the graph symmetry flip. Secondly, one shows that one can

choose gauges for D2n so that all the 2× 2-cells have real values. Flatness for D2n

follows from these two claims. But the author has been unable to give a complete

proof along this line. (The second claim was also mentioned in [16, page 160].) So

the author has given the above proof using orbifold method, which has an advantage

of handling all the Dn’s equally and constructing an interesing automorphism fixing

a subfactor globally. (See the following remark.) (After the sumission of this paper,

A. Ocneanu showed to the author the full proof along this suggested line in October,

1991. We will present his original proof in the appendix of [12].)

Remark 5.5. Ocneanu’s compactness argument [17, II.6] shows that the above

double starting points construction gives a subfactor with the principal graph

A2n−3. Thus if n is even, we know that a subfactor with the principal graph

Dn is realized as Nθ ⊂Mθ, where N ⊂M is a subfactor with the principal graph

A2n−3 and θ is an automorphism of M of order 2 and with θ(N) = N . M. Choda

asked the author whether this is valid after seeing our construction. We thank her

for this question.

§6 Flatness of connections on the Dynkin diagrams E6, E7, E8

We finally work on the diagrams E6, E7, E8. Because there are only three dia-

grams, everything is essentially a matter of finite times of computation. We will

show some numerical computation on a computer for non-flatness and give an ex-

plicit equation of algebraic integers for each E6 and E8 such that validity of the

equation is equivalent to flatness. Unfortunately, the equations are so complicated

that the author has been unable to verify them.
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At first, we fix the following numbering of the vertices of the diagrams E6, E7, E8.

E6 : 0—1—

3
|
2—4—5

E7 : 0—1—2—

4
|
3—5—6

E8 : 0—1—2—3—

5
|
4—6—7

For non-flatness, we show the following computations. (See Theorem 2.1 (2)′.)

E6, ∗ = 3 :

3 −−−−→ 2 −−−−→ 1 ←−−−− 2 ←−−−− 3� �
2 2� �
1 −−−−→ 2 −−−−→ 3 ←−−−− 2 ←−−−− 4

� 0.500000i,
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E7, ∗ = 0 :

0 −−→ 1 −−→ 2 −−→ 3 −−→ 4 ←−− 3 ←−− 2 ←−− 1 ←−− 0� �
1 1� �
2 2� �
3 3� �
4 −−→ 3 −−→ 2 −−→ 1 −−→ 0 ←−− 1 ←−− 2 ←−− 3 ←−− 5

� −0.141915− 0.169128i,

E7, ∗ = 6 :

6 −−→ 5 −−→ 3 −−→ 4 ←−− 3 ←−− 5 ←−− 6� �
2 5� �
3 3� �
4 −−→ 3 −−→ 5 −−→ 6 ←−− 5 ←−− 3 ←−− 2

� −0.051362−0.423344i,

E7, ∗ = 4 :

4 −−−−→ 3 −−−−→ 2 ←−−−− 3 ←−−−− 4� �
3 3� �
2 −−−−→ 3 −−−−→ 4 ←−−−− 3 ←−−−− 5

� 0.016011+0.432120i,
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E8, ∗ = 7 :

7 −−→ 6 −−→ 4 −−→ 5 ←−− 4 ←−− 6 ←−− 7� �
6 6� �
4 4� �
3 −−→ 4 −−→ 6 −−→ 7 ←−− 6 ←−− 4 ←−− 5

� −0.150142+0.462088i,

E8, ∗ = 5 :

5 −−−−→ 4 −−−−→ 6 ←−−−− 4 ←−−−− 5� �
4 4� �
3 −−−−→ 4 −−−−→ 5 ←−−−− 4 ←−−−− 6

� −0.008996−0.292574i,

where i is the imaginary unit. These computations were done by a C program

with double precision on a Sun by the author. Though the author has rounded the

numbers to 6 decimals, an easy error estimate shows that all of the above diagrams

indeed have non-zero values. For example, the first diagram for E7 has the biggest

estimated error. The middle vertical line should be 4 → 3 → 2 → 1 → 0, thus

we can divide the diagram into two pieces, and each has 67 configurations. For

each configuration, we have to multiply 16 complex numbers, connections, which

has errors less than 10−14. Because each connection value is less than or equal to 1

in its absolute value, we can conclude that the final computation error is less than
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10−10. The choice ∗ = 5 for E6 is also non-flat by symmetry. (Recent result of M.

Izumi [7, Theorem 3.7, Theorem 5.1] reject these cases more easily.)

Thus the only left cases are ∗ = 0 for E6 and ∗ = 0 for E8. These are the

“right” choices of ∗ Ocneanu announced in [16]. For E6, we only need to check the

following equality for flatness. (The reason is the same as in the Dn cases. See a

remark preceding Example 2.3.)

(∗)

0 −−−−→ 1 −−−−→ 2 −−−−→ 3 −−−−→ 2 −−−−→ 1 −−−−→ 0� �
1 1� �
2 2� �
3 3� �
2 2� �
1 1� �
0 −−−−→ 1 −−−−→ 2 −−−−→ 3 −−−−→ 2 −−−−→ 1 −−−−→ 0

= 1.
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For E8, we only need to check the following equality for flatness.

(∗∗)

0 −−−−→ 1 −−−−→ 2 · · · 5 · · · 2 −−−−→ 1 −−−−→ 0� �
1 1� �
2 2...

...
5 5
...

...
2 2� �
1 1� �
0 −−−−→ 1 −−−−→ 2 · · · 5 · · · 2 −−−−→ 1 −−−−→ 0

= 1.

These two are explicit equations of exp
π
√−1
24

and exp
π
√−1
60

respectively, be-

cause the connection W is explicitly given, each entry of the Perron-Frobenius eigen-

vector can be represented by the Perron-Frobenius eigenvalue β, and β = −ε2− ε̄2.

But unfortunately, these equations are too complicated and the author has been

unable to prove them. But numerical computation on a computer with error esti-

mate as above has shown that the above equalities are valid up to error 10−5. Our

theorem is now as follows.

Theorem 6.1. The Dynkin diagram E7 does not have a flat connection on it. Each

of E6 and E8 has two flat connections, assuming the above two equalities are valid.

Thus there are no subfactors having D7 as principal graphs, and there are only two
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subfactors having E6, E8 as their principal graph for each E6 and E8, assuming the

validity of the above two equalities.

We explain more about the equations for E6 and E8. Because there is a symmetry

of four corners in (∗) and (∗∗), we only need to compute the following numbers.

Define matrices C(x),D(x) by

C(x)ξ,η =

0 −−−→ 1 −−−→ 2 −−−→ 3� �η

1 ·� �
2 ·� �
3 −−−→

ξ
· −−−→ · −−−→ x

,

D(x)ξ,η =

0 −−→ 1 −−→ 2 · · · −−→ 5� �η

1 ·� �
2 ·
...

...
5 −−→

ξ
· −−→ · · · · −−→ x

,

where x is one of 0, 2, 5 [resp. 0, 2, 4, 7] and ξ, η are any paths from 3 [resp. 5] to x

in the first [resp. second] case. It is easy to see that the left hand sides of (∗) and
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(∗∗) are computed as follows.

µ(0)
µ(3)2

∑
x=0,2,5

µ(x)Tr(C(x)C(x)∗C(x)C(x)∗),

µ(0)
µ(5)2

∑
x=0,2,4,7

µ(x)Tr(D(x)D(x)∗D(x)D(x)∗).

Numerical computation on a computer suggests the following.

(1) C(0), C(5),D(0),D(4) are rank 1 partial isometries.

(2) C(2),D(2),D(7) are all zero.

Because C(0), C(5),D(0) are just 1× 1-matrices, (1) means that these are complex

numbers with modules 1. The matrix D(4) is a symmetric 11 × 11-matrix and

for computation of its 121 entries we have to compute the cell values for at most

1879 configurations. Unfortunately, the computation is still too complicated and

the author has not been able to verify the above suggested claim. Note that if (1)

is valid, then (2) automatically follows and everything is over because the left hand

sides of (∗) and (∗∗) are positive numbers between 0 and 1 by unitarity.

Note that for each of E6 and E8, if the above identity is valid, then there are

two (and only two) subfactors for the principal graph, and if it is invalid, there are

no subfactors. These two are the only possibilities. In [2], Bion-Nadal constructed

a subfactor with E6 as its principal graph. This means there is a flat connection

on E6, thus the connection of her subfactor must be one of the above two, and this

proves indirectly that the both connections are flat. M. Izumi also constructed a
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subfactor with the principal graph E6 in [8] by a different method based on the

Cuntz algebra and type III subfactors.
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