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Braiding and nets of factors on the circle

Yasuyuki Kawahigashi

Abstract.

We review various properties of braiding in subfactor theory and
their connection to nets of factors on S1 particularly.

§1. Introduction

The notion of braiding has recently caught much attention in theory
of quantum groups, 3-dimensional topological quantum field theory, and
conformal field theory. Here we review the current status of results
related to braiding in subfactor theory. We particularly focus on nets of
factors on S1, or chiral conformal field theories on S1 here.

§2. Braiding in subfactor theory

Braiding plays an important role in subfactor theory. Rehren’s early
work [26] sets a fundamental base in the theory of braiding in the setting
of subfactors and algebraic quantum field theory. He defined the notion
of braiding and its non-degeneracy for a system of endomorphisms of a
factor and showed that we have a unitary representation of SL(2,Z) if
and only if a braiding on a finite system of irreducible endomorphisms
is non-degenerate.

In subfactor theory, we work on a certain algebraic system which
is closed under algebraic operations such as “tensor product” and “con-
jugation”. In an axiomatic approach, our “object” is just something
satisfying certain set of axioms and one can study algebraic systems of
such objects independently from operator algebras, but we are interested
in operator algebraic viewpoints here. Then an object we study in such
a theory is an M -N bimodule or a ∗-homomorphism from N into M
where M and N are appropriate von Neumann algebras, usually factors
of type II1 or type III. Considering bimodules over factors of type II1
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and ∗-homomorphisms form a factor of type III into another are essen-
tially the same from a viewpoint of algebraic/combinatorial structures,
but in this paper we deal with type III factors in connection to algebraic
quantum field theory.

Let N be a factor of type III and ∆ ⊂ End(N) a finite system of
endomorphisms of N in the following sense.

1. Each λ ∈ ∆ is an irreducible endomorphism of N and has a finite
statistical dimension.

2. Endomorphisms in ∆ are mutually inequivalent.
3. The identity morphism is in ∆.
4. For any λ ∈ ∆, we have a conjugate morphism λ̄ in ∆.
5. For any λ, µ ∈ ∆, we have non-negative integers Nν

λ,µ satisfying
[λ][µ] =

∑
ν∈∆ Nν

λ,µ[ν ], where [λ] denotes the unitary equivalence
class of λ which is also called a sector.

A system of endomorphism naturally gives a fusion rule algebra
with composition of endomorphisms as its multiplication, but there is no
reason this multiplication is commutative (up to inner automorphisms)
and it is very easy to construct a non-commutative example from an
action of a finite non-commutative group, for example. But here we are
interested in the commutative case.

When the composition of the endomorphisms in the system is com-
mutative up to inner automorphism of N , a braiding, roughly speaking,
means a “compatible choice” of such unitary intertwiners in each space
Hom(λµ, µλ), λ, µ ∈ ∆. The following gives the precise definition of a
braiding on a system of endomorphisms. (Even when such a commu-
tative system is given, we do not have existence nor uniqueness of a
braiding in general.)

Definition 2.1. We say that a system ∆ of endomorphisms of
N has a braiding if for any pair λ, µ ∈ ∆ there is a unitary operator
ε(λ, µ) ∈ Hom(λµ, µλ) satisfying the following properties.

1. We have ε(idN , µ) = ε(λ, idN ) = 1, for any λ, µ ∈ ∆.
2. Whenever t ∈ Hom(λ, µν) we have

ρ(t)ε(λ, ρ) = ε(µ, ρ)µ(ε(ν, ρ))t,
tε(ρ, λ) = µ(ε(ρ, ν))ε(ρ,µ)ρ(t),

ρ(t)∗ε(µ, ρ)µ(ε(ν, ρ)) = ε(λ, ρ)t∗,
t∗µ(ε(ρ, ν))ε(ρ,µ) = ε(ρ, λ)ρ(t)∗ ,

for any λ, µ, ν ∈ ∆.

The unitaries ε(λ, µ) are called braiding operators. We sometimes
write ε+ for ε with convention ε−(λ, µ) = (ε(µ, λ))∗ for the opposite
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braiding. The following definition of non-degeneracy of a braiding means
that ε+ and ε− are “really different”. This notion is quite important
for our study as well as study of topological invariants, since a braiding
corresponds to a crossing of a planar picture of a link. (If overcrossing
and undercrossing are not really ditinguished, one can easily imagine
that such a topological study is rather limited.)

Definition 2.2. We say that a braiding ε on a system ∆ of endo-
morphisms of N is non-degenerate, if the equalities ε+(λ, µ) = ε−(λ, µ)
for all endomorphisms µ ∈ ∆ imply λ = idN .

If we have a braiding on a finite system ∆, we can define S- and T -
matrices whose sizes are the number of endomorphisms in ∆, as in [26].
The above non-degeneracy is equivalent to unitarity of the S-matrix as
proved in [26], and if it is non-degenerate, the S- and T -matrices give a
unitary representation of SL(2,Z).

The above setting is for endomorphisms of a single operator algebra
N . We now discuss subfactors N ⊂ M . Suppose we start with an ar-
bitrary subfactor N ⊂ M of type III with finite index. Let ι : N → M
be the embedding map and ῑ : M → N be its conjugate morphism.
We choose sets of morphisms NXN ⊂ Mor(N,N), NXM ⊂ Mor(M, N),
MXN ⊂ Mor(N,M) and MXM ⊂ Mor(M, M) consisting of representa-
tive morphisms of irreducible subsectors of sectors of the form [ῑι · · · ῑι],
[ῑι · · · ῑ], [ι · · · ῑι] and [ιῑ · · · ιῑ] respectively. (We may and do choose
idM , idN in NXN , MXM as the endomorphisms representing the triv-
ial sectors.) Then NXN and MXM are systems of endomorphisms of N
and M , respectively, in the above sense. We also assume that NXN is
finite. This automatically implies that the subfactor N ⊂ M is of finite
depth. If NXN is braided in the above sense, we say that the subfactor
N ⊂ M is braided. (Note that this is not equivalent to the condition
that MXM is braided.) More generally, we also consider a finite system
of endomorphism containing NXN strictly as a subsystem, and such an
extension is important in many aspects, but we do not care this matter
very much in this article. Even when a subfactor N ⊂ M is of type II,
we can consider a subfactor N ⊗ R ⊂ M ⊗ R for any type III factor R
and this tensoring does not change any abstract structure of bimodules
arising from the subfactor in which we are interested, so if the resulting
subfactor N⊗R ⊂ M⊗R is braided, we also say that N ⊂ M is braided.

If we arbitrarily construct a subfactor, it is highly unlikely that
it is braided. However, natural constructions of a braiding are well-
known in theory of quantum groups and conformal field theory. We also
have natural appearance of braided subfactors in theory of subfactors as
follows.
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1. Ocneanu’s asymptotic inclusions in [22, 23].
2. Longo-Rehren subfactors in [18].
3. Goodman-de la Harpe-Jones subfactors in [11, Sect. 4.5].
4. Wassermann’s loop group construction in [29].

The first and second construction give a new subfactor from a given
one, and from a categorical viewpoint, they are identified as in [19].
They are very general constructions to produce a braiding from an arbi-
trary finite system of endomorphisms. In this sense, these constructions
can be regarded as an analogue of the quantum double construction [7]
in subfactor theory. (See [20, 21] for a more precise interpretation as a
quantum double construction.) Both of these are special cases of Popa’s
construction of symmetric enveloping inclusion [25]. For the third, we
need results from conformal field theory or quantum group theory in
order to show that the system of N -N bimodules is indeed braided.
For the fourth construction, we get more interesting examples in con-
nection to conformal inclusions as in [30, 31, 2]. The non-degeneracy
of the resulting braiding was claimed for (1) in [23] and proved for (2)
in [12]. (Strictly speaking, we need connectedness of the fusion graph
as in [9, Theorem 12.29]. Otherwise, we need to extend the system of
endomorphisms in order to get the non-degeneracy. See [12] for more
on this matter.) For (3), if we just consider the usual system of N -N
bimodules, then the braiding on it is possibly degenerate, since the N -N
bimodules correspond to the even vertices of the Dynkin diagram An.
We need to extend the system of bimodules so that we have N -N bimod-
ules corresponding to the odd vertices of An. Then the braiding there
is non-degenerate.) For (4), non-degeneracy of the braiding is proved in
[29].

If we have a non-degenerate braiding on a finite system of endomor-
phism, we can produce an invariant of colored links up to regular isotopy
and a 3-dimensional topological quantum field theory of Reshetikhin-
Turaev type [27]. See [28] for more details on topological quantum field
theory. It has been extensively studied these years.

In subfactor theory, one of the most important applications of braid-
ing is theory of α-induction. This construction was defined by [18] and
used systematically in [30, 31]. For further development and unification
with Ocneanu’s graphical method in [24], see [1, 2, 3, 4, 5, 6]. With this
method, one can pass from a braided system to a new system which is
not braided in general. Other studies of non-degeneracy of braiding in
subfactor theory can be found in [8, 12, 13]. Izumi [12] found that study
of the Longo-Rehren subfactors can also be made from a viewpoint of
extension (or restriction) of endomorphisms.
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§3. Completely rational nets of factors on S1

Longo [16, 17] has found a deep relation of algebraic quantum field
theory to the Jones theory [14] of subfactors. Such a relation was also
studied in [10]. Here we explain algebraic quantum field theory on S1 ,
which is regarded as a compactification of R, and results in [15] in
connection to theory of braiding as described above.

We denote by I the set of non-empty open connected proper subsets
of S1. Such a set is simply called an interval here. We study a local
irreducible conformal net A of factors on S1, which is axiomatized as
follows.

For each interval I, we have a factor A(I) on a fixed Hilbert space
H . We also have a strongly continuous unitary representation U on H
of the Möbius group PSU(1, 1) = SU(1, 1)/{±1} which acts on S1 as
fractional linear transformations. For an arbitrary set E ⊂ S1 , we define
A(E) to be the von Neumann algebra generated by all the A(I)’s with I
contained in E. For E ⊂ S1, we denote the interior of the complement
of E by E′. We then require that they satisfy the following properties.
(Though there are slightly different versions of requirements, here we
just list a simple set of axioms. Our results in [15] actually hold under
a weaker set of assumptions.)

• Isotony: For intervals I ⊂ J , we have A(I) ⊂ A(J).
• Locality: For disjoint intervals I and J , we have A(I) ⊂ A(J)′.
• Irreducibility: The von Neumann algebra generated by all A(I)’s

is B(H).
• Covariance: For g ∈ PSU(1, 1) and an interval I, we have

U(g)A(I)U(g)∗ = A(gI).

• Positive energy: The generator of the rotation subgroup of PSU
(1, 1) is positive.

• Split property: If Ī and J̄ do not intersect for intervals I and J ,
then A(I) ⊗A(J) are naturally isomorphic to A(I) ∨A(J).

• Strong additivity: For an interval I and its interior point p, we
have A(I) = A(I \ {p}).

• Unique existence of vacuum: All the vectors in H fixed by the
action of PSU(1, 1) are multiples of a fixed non-zero vector Ω.

We then acutally have a stronger form of locality, Haag duality,
which says that for an interval I, we have A(I′) = A(I)′. Factors A(I)
are then automatically injective and of type III1. Important examples
of such nets of factors on S1 have been constructed by A. Wassermann
[29] using loop groups of SU(n).
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For an arbitrary set E ⊂ S1 , locality implies that A(E) and A(E′)
commute, thus we naturally have an inclusion A(E) ⊂ A(E′)′. This
inclusion can be non-trivial if E is not an interval. We are interested in
this inclusion for the case E is a union of two intervals whose closures
have no intersection.

A representation π of a net A on a Hilbert space K is a family
π = {πI}I⊂S1 , where πI is a representation of A(I) on K and we require
that πJ is an extension of πI for intervals I ⊂ J . A representation
π is called locally normal if each πI is normal. Since we deal with
only representations on separable Hilbert spaces, the local normality
automatically holds. There is also a notion of covariance for such a
representation, which is defined as obvious compatibility with a unitary
representation of the Möbius group on K, but we do not assume such a
property on representations of a net. It turns out that this covariance
property automatically holds for representations of a net which we are
interested in.

Such a representation of a net is described as a localized trans-
portable endomorphism λ of the quasi-local C∗-algebra as usual in the
DHR-framework. See [10] for example. A unitary equivalence class of
such representations (or localized endomorphisms) is called a (superse-
lection) sector of the net A. For an interval I, such λ gives a sector of
A(I), which is a unitary equivalence class of endomorphisms of A(I).
We are interested in structure of superselection sectors of a net A.

Let E be any union of two intervals on S1 whose closures have no
intersection. Let Â(E) = A(E′)′ for such E and consider the subfactor
A(E) ⊂ Â(E). It turns out that if this subfactor has a finite index for
some E, then we always have the same finite index for any E. When
this finiteness holds, we say that the net A is completely rational and
write µA for the index value.

Let A be a completely rational net of factors on S1 as above. Let
E be a disjoint union of two intervals I, J whose closures have no in-
tersection. Let λ and µ be irreducible endomorphisms of A localized
in I and in J , respectively. Then λµ restricts to an endomorphism of
A(E). Let γE be the canonical endomorphism of Â(E) into A(E) and
θE its restriction on A(E). We can prove as in [15] that λµ restricted on
A(E) is contained in θE if and only if λ and µ are mutually conjugate.
Moreover, in this case, the multiplicity of λµ|A(E) in θE is one. Using
this, we can prove the following result as in [15], which gives a reason
for the terminology “completely rational”.
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Theorem 3.1. Let A be a completely rational net on S1 as above.
Then the net A is rational in the sense that we have only finitely many ir-
reducible superselection sectors [λ0], [λ1], . . . , [λn] with finite dimension,
and furthermore, we have

∑n
i=0 d(λi)2 = µA.

Fix an interval I and regard [λ0], [λ1], . . . , [λn] as sectors of A(I).
Then {λ0, λ1, . . . , λn} gives a system of endomorphisms of A(I) in the
sense defined above. The Longo-Rehren construction [18] applies to such
a system and we have a factor A(I) ⊗A(I)opp ⊂ B. The index of this
Longo-Rehren subfactor is equal to

∑n
i=0 d(λi)2 = µA and this equality

suggests some relation between A(E) ⊂ Â(E) and the Longo-Rehren
subfactor. Actually, we have the following result [15], where the symbol
“opp” means the opposite algebra.

Theorem 3.2. The subfactor A(E) ⊂ Â(E) is isomorphic to the
Longo-Rehren subfactor A(I) ⊗A(I)opp ⊂ B.

Now we discuss a relation of this result to theory of braiding. It
is well-known that we naturally have a braiding on the system of endo-
morphisms {λ0, λ1, . . . , λn} of A(I), and the construction of the braiding
goes roughly as follows. (See [1, Section 2.2], for example.)

Take endomorphisms λj , λk localized in an interval I. Choose two
intervals I1, I2 with empty intersection, and Then there are unitaries
U1 and U2 such that λ′

j = Ad(U1) ◦ λj and λ′
k = Ad(U2) ◦ λk are

localized in I1 and I2, respectively. Set ε(λj , λk) = λk(U∗
1 )U∗

2 U1λj(U2).
This unitary does not depend on choices of U1, U2, and it depends only
on the “order” of I1 and I2 on S1. In this way, we get two unitaries
ε±(λj , λk) and these give a braiding on the system of endomorphisms
{λ0, λ1, . . . , λn} of a type III factor A(I).

On one hand, the above theorem says that the subfactor A(E) ⊂
Â(E) is isomorphic to the Longo-Rehren subfactor arising from a braided
system of endomorphisms. As mentioned above, the Longo-Rehren con-
struction produces a non-degenerate braiding, but if we have a non-
degenerate braiding from the beginning, the Longo-Rehren construc-
tion just produces a direct product system of the original braided sys-
tem and its opposite system as in [23, 8, 12]. So if the original sys-
tem {λ0, λ1, . . . , λn} has a non-degenerate braiding, then the systems
of endomorphisms of A(E) and Â(E) are isomorphic for the subfactor
A(E) ⊂ Â(E). On the other hand, it is trivial from the construction
that the subfactor A(E) ⊂ Â(E) is self-dual. In comparison to the study
of the Longo-Rehren subfactors (or asymptotic inclusions) arising from
a non-degenerate system as mentioned above, this self-duality suggests
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that the braiding on the system {λ0, λ1, . . . , λn} is non-degenerate. We
have proved in [15] that this is indeed the case.

Theorem 3.3. The braiding on the system {λ0, λ1, . . . , λn} is non-
degenerate and thus we have a unitary representation of SL(2,Z).

As a final remark, we note that it is not very easy to verify the
complete rationality since it involves the index computation, but Xu
has verified this condition in several cases. In the case of Wassermann’s
net [29] arising from loop groups of SU(n), Xu [32] computed the index
of the subfactor A(E) ⊂ Â(E) using a brilliant idea and thus verified
the complete rationality. He then also applied the above our results in
various other contexts in [33, 34] by verifying the complete rationality.
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