
Exactly solvable orbifold models and subfactors

Yasuyuki Kawahigashi*
Department of Mathematics

University of California, Berkeley, CA 94720

§1 Introduction

Since the pioneering work of V. F. R. Jones [J], the theory of subfactors has had deep
and unexpected relations to 3-dimensional topology, conformal field theory, quantum
groups, etc. Here we present a relation between paragroup theory of Ocneanu on sub-
factors and exactly solvable lattice models in statistical mechanics, and in particular,
show usefulness of the notion of orbifold lattice models in subfactor theory.

Classification of subfactors of the approximately finite dimensional (AFD) factor
of type II1 is one of the most important and challenging problems in the theory of
operator algebras. This is a study of inclusions of certain infinite dimensional simple
algebras of bounded linear operators on a Hilbert space. The AFD type II1 factor, the
operator algebra we work on, is the most natural infinite dimensional analogue of finite
dimensional matrix algebras Mn(C) in a sense. (As a general reference on operator
algebras, see [T], and as a basic reference on subfactor theory, we cite [GHJ]. All the
basic notions are found there.) Here, by “a subfactor N ⊂M” we mean that N and M
are both AFD type II1 factor and N is a subalgebra of M . V. Jones studied the Jones
index [J], a real-valued invariant for the inclusion N ⊂M , which measures the relative
size of M with respect to N , roughly speaking.

A classification approach based on higher relative commutants were studied by several
people such as Jones, Ocneanu, Pimsner and Popa. In this approach, the classification
problem can be divided into the following 3 steps.

(1) Prove that the subfactor can be approximated by certain increasing sequence of
finite dimensional algebras called higher relative commutants.

(2) Characterize the higher relative commutants in an axiomatic way.
(3) Work on the axioms to classify higher relative commutants.
Part (1) is quite functional analytic, but parts (2) and (3) are rather algebraic and

combinatorial. We are concerned mainly with (2) and (3) in this paper.
V. Jones noticed that some graph called “principal graph” appears naturally from

the higher relative commutants. A. Ocneanu [O1] first claimed that Step (1) is possible
in the case with certain finiteness condition called “finite depth,” which means that
the principal graph is finite. As to Step (2), he further obtained a complete combina-
torial characterization of higher relative commutants for the finite depth case, found
a new algebraic structure, and named it paragroup. It was known that if the Jones
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index is less than 4, then the principal graph must be one of the Coxeter-Dynkin dia-
grams An,Dn, E6, E7, E8. Then Ocneanu announced a complete classification of these
subfactors through his paragroup approach in [O1].

But unfortunately, details of Ocneanu’s proofs have not appeared. As to Step (1)
of the above, S. Popa published a complete proof [P2] with the finite depth condition
and without assuming the so-called trivial relative commutant property N ′ ∩M = C.
Furthermore, he announced an ultimate result along this line [P3] and full details are
soon appearing. Thus, we now have a satisfactory theory about Step (1), and in this
paper, we work on steps (2) and (3).

On step (2), A. Ocneanu has the following four different viewpoint for paragroups.
(a) “Quantized” Galois groups
(b) “Discrete” version of compact manifolds
(c) Exactly solvable lattice models without a spectral parameter
(d) Finite tensor categories giving topological invariants of 3-manifolds
Though we mainly work on the third viewpoint (c), we make a quick explanation

on each aspect. The classical Galois theory deals with inclusions of a subfield in an-
other field. Here we work on inclusions of an (infinite dimensional non-commutative)
algebra in another. Passing to non-commutative settings is often referred (vaguely) as
quantization.

In paragroup theory, we work on finite graphs and some structure on it called “con-
nections.” This can be regarded as a discrete version of connections in differential
geometry, and an analogue of flatness of connections will play a key role.

In solvable lattice model theory, they have a notion of IRF (interaction around faces)
models. They have a graph and certain structure called Boltzmann weights on it. This
Boltzmann weight depends on a parameter called a spectral parameter, and satisfies
certain axioms. Axioms for paragroup are very similar to those of IRF models without
a spectral parameter. Indeed, we have the following correspondence table.

Paragroups IRF models
Connections Boltzmann weights
Unitarity First inversion relations
Commuting square conditions Second inversion relations
Commuting square conditions
for higher relative commutants Crossing symmetry
Flatness of connections Yang-Baxter equation plus something (?)

We show more details on this later. (See [Ba, DJMO, Ji] for more on lattice models.)
A. Ocneanu recently announced in [O4] that paragroups are in bijective correspon-

dence to certain type of complex-valued topological invariants of 3-dimensional mani-
folds. This construction is a generalization of the Turaev-Viro invariant [TV].

In this paper, we first make a review of Ocneanu’s paragroup theory, and then go into
our idea of using orbifold models in paragroup settings. Roughly speaking, this idea is
making a quotient of a paragroup for certain symmetry having a fixed point. In this
way, we can solve some problems and give new constructions in subfactor theory. The



notion of orbifold subfactors were studied through the joint work with D. E. Evans. The
author thanks Professors D. Bisch, M. Choda, U. Haagerup, M. Izumi, V. F. R. Jones,
T. Miwa, A. Ocneanu, M. Okado, S. Okamoto, S. Popa, H. Wenzl, and S. Yamagami
for several useful comments and conversations during this work.

§2 Bijective correspondence between paragroups and finite depth subfactors

Although A. Ocneanu announced a combinatorial axiomatization of higher relative
commutants as paragroups in [O1], full details of his proof have not appeared. But this
characterization is now fully understood from his various lectures [O2, O3]. Because
necessary arguments are scattered among the several literatures like [O1, O2, O3, P2,
Ka] some of which are not widely available, here we give an exposition on how to obtain
the bijective correspondence between paragroups and finite depth subfactors.

We follow a formal string algebra approach of [O2] rather than II1 factor bimodule
approach [O1, O3]. This has a disadvantage that meaning is less clear, but has an
advantage that the method is entirely elementary and more general than the bimodule
approach. (For example, formal approach based on connection also easily works for
subfactors of Goodman-de la Harpe-Jones [GHJ]. See Remark 2.2.) For details of the
II1 factor bimodule approach, also see [Y].

Let N ⊂ M be a subfactor of the AFD factor of type II1 with finite index and
finite depth. (In the rest of this paper, we mean by a subfactor only the above type of
subfactors.) Repeating the downward basic construction, we choose a tunnel

· · ·N3 ⊂ N2 ⊂ N1 ⊂ N ⊂M

(See [J, GHJ] for basic definitions.) Consider the following canonical commuting squares
in the sense of Popa.

N ∩N ′ ⊂ N ∩N ′
1 ⊂ N ∩N ′

2 ⊂ N ∩N ′
3 · · ·

∩ ∩ ∩ ∩
M ∩N ′ ⊂ M ∩N ′

1 ⊂ M ∩N ′
2 ⊂ M ∩N ′

3 · · ·
By Theorem of S. Popa [P2] (announced by A. Ocneanu), we may assume that each
line above converges to N and M respectively by a certain choice of a tunnel. When we
look at the Bratteli diagram of the sequence above, we find that there are four bipartite
graphs G1,G2,H1,H2 connected as follows.

· G1−−−−→ ·
G2

� �H1

· −−−−→
H2

·

That is, we consider the following sequence of graphs and there is a distinguished vertex
at the upper left corner of the diagram above so that all the paths starting from ∗ in



the following diagram gives the above-mentioned Bratteli diagram.

· G1−−−−→ · G̃1−−−−→ · G1−−−−→ · · · ·
G2

� �H1

�G2

�H1

· −−−−→
H2

· −−−−→
H̃2

· −−−−→
H2

· · · ·

Here the notation˜means the reflection of the graph. Furthermore, G1 and G2 are the
same (the principal graph), and H1 and H2 are the same (the dual principal graph).
The ways G1 and H1 are connected and G2 and H2 are connected are the same. But the
ways G1 and G2 are connected and H1 and H2 are connected may be non-trivial. This
non-triviality is handled by the contragredient map in the sense of Ocneanu [O1]. (For
these, see [P2, §6], for example.)

Because we assume the finite depth condition, the Bratteli diagram above starts
to have period 2 after finite stages. Let k be the minimal even integer at which the
commuting square

N ∩N ′
k ⊂ N ∩N ′

k+1

∩ ∩
M ∩N ′

k ⊂ M ∩N ′
k+1

starts to be periodic. If we have inclusions of four finite dimensional C∗-algebras, this
diagram is described by string algebras and connections as in [O1, O2, O3]. (String
algebra description of an increasing system of finite dimensional C∗-algebra was intro-
duced in [E1, E2] with the name of path algebra.) A full proof of this was given in [O2],
and only elementary linear algebra is needed for the proof. Here by “connection”, we
mean an assignment of complex numbers to each square of the following form.

a
ξ1−−−−→ b

ξ2

� �ξ3

c −−−−→
ξ4

d

where ξ1, ξ2, ξ3, ξ4 are edges of G1,G2,H1,H2 respectively, and a, b, c, d are vertices of
the appropriate graphs. (Remember that each graph is bipartite and we identify even
vertices of G1 and G2, and so on.) The connection is not uniquely determined from
the four finite dimensional algebras, but it is unique up to certain equivalence relation
discussed in [O1, O2]. Equivalent connections differ by so-called gauge choice freedom.
This setting is quite similar to that of exactly solvable IRF (interaction around faces)
lattice models [Ba, DJMO]. Usually in their setting, our four graphs are the same single
one, which is sometimes oriented. They call above type of squares arising from the
graph admissible, and their notion of Boltzmann weight corresponds to our notion of
connection. (Further similarity between IRF models and paragroups will be discussed
later, but we do not have a parameter corresponding to the spectral parameter in
IRF models.) Rougly speaking, the connection gives identification of two basis on the
algebra M ∩ N ′

k+1 arising from the two inclusions N ∩ N ′
k ⊂ N ∩ N ′

k+1 ⊂ M ∩ N ′
k+1

and N ∩ N ′
k ⊂ M ∩ N ′

k ⊂ M ∩ N ′
k+1. (Each inclusion gives an expression of a string



algebra.) Because this identification must be a ∗-isomorphism, we have the following
unitarity axiom.

∑
b,ξ2,ξ3

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

·
b

ξ2←−−−− a

ξ3

� �η1

d ←−−−−
η4

c′
= δξ1,η1δξ4,η4δc,c′,

∑
c,ξ1,ξ4

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

·

b′
η2←−−−− a

η3

� �ξ1

d ←−−−−
ξ4

c

= δξ2,η2δξ3,η3δb,b′,

Here we used the following conventions.

a
ξ2−−−−→ b

ξ1

� �ξ3

c −−−−→
ξ4

d

=

b
ξ2←−−−− a

ξ3

� �ξ1

d ←−−−−
ξ4

c

=

c
ξ4−−−−→ d

ξ1

� �ξ3

a −−−−→
ξ2

b

=

d
ξ4←−−−− c

ξ3

� �ξ1

b ←−−−−
ξ2

a

In IRF model theory, they call the corresponding axiom unitarity or the first inversion
relations [Ba].

Now our four algebras give not just inclusions but a commuting square. This gives
a certain condition on the connection. Because we can write down the trace and the
conditional expectation explicitly as in [O1, O2, O3], we can write down the commuting
square condition in terms of the connection, and by comparing the coefficients in the
both hand sides, we get the following.

∑
d,ξ3,ξ4

√
µ(a)µ(d)
µ(b)µ(c)

a
ξ1−−−−→ b

ξ2

� �ξ3

c −−−−→
ξ4

d

√
µ(a′)µ(d)
µ(b)µ(c)

a
η1−−−−→ b

η2

� �ξ3

c −−−−→
ξ4

d

= δa,a′δξ1,η1δξ2,η2.

Here the notation µ(·) means the entry of the Perron-Frobenius eigenvector. A proof for
this is given in [O2, Sc] and quite elementary. This formula corresponds to the second
inversion relations in the IRF models [Ba], so we also call this the second inversion
relations. Then for our admissible squares, we define the following values for other
types of squares.



d
ξ̃4−−−−→ c

ξ̃3

� �ξ̃2

b −−−−→
ξ̃1

a

=

a
ξ1−−−−→ b

ξ2

� �ξ3

c −−−−→
ξ4

d

c
ξ4−−−−→ d

ξ̃2

� �ξ̃3

a −−−−→
ξ1

b

=

b
ξ̃1−−−−→ a

ξ3

� �ξ2

d −−−−→
ξ̃4

c

=

√
µ(a)µ(d)
µ(b)µ(c)

a
ξ1−−−−→ b

ξ2

� �ξ3

c −−−−→
ξ̃4

d

where the notation ξ̃j means the edge with its orientation reversed. Then by the sec-
ond inversion relation, the above also satisfy unitarity. The definitions above are an
analogue of crossing symmetry in IRF model theory [Ba]. So we also call these cross-
ing symmetry. We call the above assignment of complex numbers to all the admissible
squares (biunitary) connection. (The name “biunitary” connection of Ocneanu comes
from that there are two kinds of unitarity: first and second inversion relations.) In
this way, we obtain a connection from a subfactor. In short, commuting squares arising
as the higher relative commutants correspond to crossing symmetry and more general
commuting squares correspond to the second inversion relations in IRF model theory.
Note that the renormalization convention for crossing symmetry here is slightly different
from that in [O1] and the same as in [O3, EK, IK, Ka].

A connection arising from a subfactor satisfies another important axiom called flat-
ness. In order to explain it, we first show how to construct a subfactor from a biunitary
connection on two graphs G,H with the same Perron-Frobenius eigenvalues.

We have the distinguished point ∗ among the even vertices of G, which corresponds
to the starting vertex of the Bratteli diagram for N ′

k ∩ N . Then, we can construct a
double sequence of string algebras starting from ∗:

A0,0 ⊂ A0,1 ⊂ · · · → A0,∞
∩ ∩ ∩

A1,0 ⊂ A1,1 ⊂ · · · → A1,∞
∩ ∩ ∩

A2,0 ⊂ A2,1 ⊂ · · · → A2,∞
...

...
...

Identification for different expressions of strings are again given by the connection. See
[O1, page 128] or [O3, II.1–2] for more details. A trace compatible with the embeddings
above can be defined with the Perron-Frobenius eigenvector entries, and A0,∞, etc., are
the GNS-completions with respect to this trace. (See [O1, page 129] or [O3, II.1] for
this trace.) Then the inclusion A0,∞ ⊂ A1,∞ is the string model subfactor of Ocneanu.
We claim that if the connection arises from a subfactor N ⊂ M in the above way, this
subfactor A0,∞ ⊂ A1,∞ is conjugate to N ⊂M .



This is proved as follows. First note that we have a sequence of the Jones projections
{e−n} with Nn = Nn−1 ∩ {e−n+1}′. We identify the increasing sequence of the string
algebra

A0,0 ⊂ A0,1 ⊂ · · · ⊂ A0,k ⊂ A0,k+1 ⊂ A1,k+1

with the sequence

N ∩N ′ ⊂ N ∩N ′
1 ⊂ · · · ⊂ N ∩N ′

k ⊂ N ∩N ′
k+1 ⊂M ∩N ′

k+1,

where k is as in the definition of the connection. Next we make identification of the
following two sequences

A0,k+1 ⊂ A0,k+2 ⊂ A0,k+3 ⊂ · · ·
N ∩N ′

k+1 ⊂ N ∩N ′
k+2 ⊂ N ∩N ′

k+3 ⊂ · · ·
so that the Jones projections {e−n}, n ≥ k + 1, have the expressions

e−n =
∑

|α|=n−1
|v|=|w|=1

µ(r(v))1/2µ(r(w))1/2

βµ(r(α))
(α · v · ṽ, α · w · w̃),

where β is the Perron-Frobenius eigenvalue of the graph (which is equal to the square
root of [M : N ]), α is any horizontal path from ∗ of G, and v,w are chosen so that the
compositions are possible, and | · | denote the length of a path. This is possible because
the expressions above satisfy all the required properties for the Jones projections. The
expressions above for the Jones projections are due to Ocneanu [O3, II.3] and Sunder
[Su]. We also identify two sequences

A1,k+1 ⊂ A1,k+2 ⊂ A1,k+3 ⊂ · · ·
M ∩N ′

k+1 ⊂M ∩N ′
k+2 ⊂M ∩N ′

k+3 ⊂ · · ·
so that the Jones projections have the same expressions for the other graph H. Then
we claim that these two identifications are compatible with the connection. To see this,
it is enough to check the Jones projections on the first horizontal line are transformed
to the Jones projections on the second horizontal line by the connection, but this is
valid as in [O3], which is the same as flatness of the Jones projections implied by the
crossing symmetry. In this way, we get an isomorphism of A1,∞ onto ∨n(M ∩N ′

n) which
carries A0,∞ onto ∨n(N ∩N ′

n). Because we assumed that the tunnel has the generating
property, we are done.

Now we work on the double sequence of string algebras arising from a biunitary con-
nection which may not come from a subfactor. We define the vertical Jones projections
{en} with en ∈ An−1,0 with the same expression as above for the vertical string algebra
of G from ∗. Then the crossing symmetry again implies the flatness of the vertical Jones
projections and we can conclude that

A0,∞ ⊂ A1,∞ ⊂ A2,∞ ⊂ A3,∞ ⊂ · · ·
is the Jones tower of the inclusion A0,∞ ∈ A1,∞ by [PP, Proposition 1.2].



One of the main problems in subfactor theory is a computation of higher relative
commutants N ′ ∩Mn for a given construction of a subfactor N ⊂M . Suppose we have
a subfactor N = A0,∞ ⊂ M = A1,∞ as above constructed from a double sequence of
string algebras with a connection on finite graphs which may not come from a subfactor.
Then Ocneanu found that N ′ ∩Mn is always a subalgebra of An+1,0 and gave a nice
combinatorial characterization for strings in An+1,0 to be in N ′ ∩Mn with his compact-
ness argument [O3, II.6]. In many natural cases, we have equality N ′ ∩Mn = An+1,0.
Because we have two graphs G and H, we can repeat the same construction with G and
H interchanged. If we have equalities N ′ ∩Mn = An+1,0 in the both cases, we say that
the connection is flat. We now claim that a connection arising from a subfactor N ⊂M
is flat.

We already know that A0,∞ = N , A1,∞ = M , and N ′ ∩Mn ⊂ An+1,0. But both
N ′∩Mn and An+1,0 are identified with the string algebra with length n+1 of G starting
from ∗, so these two algebras have the same dimensions. With the inclusion above, we
get N ′ ∩Mn = An+1,0. Next we define A1,−1 = C and regard the sequence

A1,−1 ⊂ A1,0 ⊂ A1,1 ⊂ A1,2 ⊂ · · ·
as an increasing sequence of string algebras of H starting from ∗ of H. This is possible
because we have the same number of edges from ∗ of G and ∗ of H and each pair
of vertices of G and H is identified. Furthermore, we construct a vertical increasing
sequence of string algebras

A1,−1 ⊂ A2,−1 ⊂ A3,−1 ⊂ A4,−1 ⊂ · · ·
as an increasing sequence of string algebras of H starting from ∗ of H. Then we embed
An,−1 into An,0 using the graph G or H according to parity of n. In this way, we extend
the double sequence to the following form.

A0,0 ⊂ A0,1 ⊂ · · · → A0,∞
∩ ∩ ∩

A1,−1 ⊂ A1,0 ⊂ A1,1 ⊂ · · · → A1,∞
∩ ∩ ∩ ∩

A2,−1 ⊂ A2,0 ⊂ A2,1 ⊂ · · · → A2,∞
...

...
...

...

Now the same kind of argument as above gives M ′ ∩ Mn = An+1,−1, which means
flatness as desired.

By the above, we know that if we make a flat connection from a subfactor and then
make a subfactor from the flat connection, we get the same subfactor back. Conversely,
we will prove that if we make a subfactor from a flat connection and then make a flat
connection from the subfator, we get the same flat connection back. So suppose we have
a double sequence of string algebras arising from a flat connection. By similar method



to the above, we can extend the double sequence to the following form.

· · ·
· · · ...

A−2,2 · · · → A−2,∞
∩ ∩

A−1,1 ⊂ A−1,2 · · · → A−1,∞
∩ ∩ ∩

A0,0 ⊂ A0,1 ⊂ A0,2 · · · → A0,∞
∩ ∩ ∩ ∩

A1,0 ⊂ A1,1 ⊂ A1,2 · · · → A1,∞
∩ ∩ ∩ ∩

A2,0 ⊂ A2,1 ⊂ A2,2 · · · → A2,∞
...

...
...

...

That is, we have Am,n, for all m, n with −m ≤ n, 0 ≤ n. By the same kind of argument
as above, we can prove that

A0,∞ ⊃ A−1,∞ ⊃ A−2,∞ ⊃ · · ·
is a tunnel. Flatness now implies that A0,n = A′

−n,∞∩A0,∞ and A1,n = A′
−n,∞∩A1,∞.

In this way, we get the conclusion. (By this arguments, we also proved that the tunnel
above has the generating property.)

Note that identification of flat connections are given by gauge choice freedom and
graph isomorphism as in [O1, O2, O3]. Thus, we have established the bijective corre-
spondence between conjugacy classes of subfactors and equivalence classes of flat con-
nections. Flatness does not have a direct analogue in IRF model theory unlike the first
and second inversion relations, but in some “good” cases, the flatness is obtained from
the Yang-Baxter equation in the IRF model theory. This will be discussed in §4 in
connection with Hecke algebra subfactors of Wenzl.

The next topic is how to check flatness for a given biunitary connection. We work
only on the equality N ′ ∩ Mn = An+1,0 because the other is handled in the same
way. First note that this can be stated as xy = yx for x ∈ An,0, y ∈ A0,m. This
form is conceptually simple. But the difficulty is that we have infinitely many strings
for which we have to check commutativity. Because we assume that the both graphs
G,H are finite, the increasing sequence of the string algebra is generated by the Jones
projections and some finitely many elements. Flatness is automatically satisfied for the
Jones projections, so it is enough to check commutativity only for finitely many elements.
In this way, checking flatness is reduced to finitely many computations. Furthermore,
the following theorem gives computational methods to check flatness.

Theorem 2.1. The following conditions are equivalent.
(1) In the double sequence of string algebras, any two elements x ∈ A∞,0, the vertical

string algebra, and y ∈ A0,∞, the horizontal string algebra, commute.



(2) For each vertical string ρ = (ρ+, ρ−) ∈ Ak,0, we get

∗ ξ−−→ · · · −−→ ·
ρ+

� �σ+

...
...� �

· ·� �
...

...

ρ−
� �σ−

∗ −−→
η
· · · −−→ ·

= δξ,ηCρ,σ,

where Cρ,σ ∈ C depends only on ρ, σ = (σ+, σ−).
(3) For any horizontal paths ξ+, ξ− and vertical paths η+, η− with all the sources and

ranges equal to ∗, we get

∗ ξ+−−→ · · · −−→ ∗
η+

� �η−

...
...� �

∗ −−→
ξ−
· · · −−→ ∗

= δξ+,ξ−δη+,η−.

In the theorem above, the meaning of large diagrams are as follows. We consider
all the possible ways of filling the large diagram with admissible squares. Each such a
choice is called a configuration. We multiply the connection values of all the admissible
squares in each configuration and sum them over all the configurations. This is the
value assigned to the large diagram above, and we mean this value by the diagram.
This is an analogue of a partition function in the IRF model theory.

Condition (3) above was used as definition of flatness by Ocneanu [O1], and equiva-
lence to (2) was claimed in [O1] without proof. The name “flat connection” comes from
a fact that these conditions are analogues of conditions for flat connections in differ-
ential geometry. A proof for the theorem above was given in [Ka]. Again, in order to
check flatness for a given connection, we need to verify (2) or (3) only for finitely many
diagrams. Biunitarity is a local axiom in the sense that we can check it just by looking
at a part of the graph for each equality, but this flatness axiom is a global axiom, and in
general, very hard to verify. For example, in the case of index less than 4, the principal
graph must be one of the Dynkin diagrams of type A,D,E and the dual principal graph



must be the same. Then it is not so difficult to get all the connections on them [O1,
O3, Ka]. That is, there is a unique connection on each of An,Dn, and there are two
connections on each of E6, E7, E8. So classification of subfactors with index less that 4 is
reduced to flatness problem of these connections, which requires deeper considerations.

Remark 2.2. A series of subfactors was constructed by [GHJ] for the Coxeter-Dynkin
diagrams, and S. Okamoto [Ok] computed the principal graphs for them. This result
follows very easily from the above general settings of a double sequence of string algebras
with a connection which does not come from a subfactor. By [GHJ], we know that the
subfactor arises from the double sequence of string algebras with a biunitary connection
on the following type of diagram.

∗ An−−−−→ ·
G1

� �G2

· −−−−−−−−→
one of A,D,E

·

where G1 and G2 are some graphs with the same Perron-Frobenius eigenvalues, which
can be computed easily. Then it is easy to see the method above of computation of
the principal graph also works for this connection. The horizontal string algebra is now
generated by the Jones projections, so flatness of this connection immediately follows
from the flatness of the Jones projections. (That is, each vertical string commutes
with each horizontal string.) Thus, the vertical graph G1 is the principal graph of the
subfactor. (Both Ocneanu and Okamoto said to the author that they had known this
simple method.)

It is also possible to compute the connection explicitly. For example, [R] has a table
of connection values for the subfactor with index 3 +

√
3 arising from E6 and [DZ] has

more. (Roche calls it a cell system and used it for a different purpose.)
The graph G2 in the diagram above is not the “dual” principal graph in general, and it

is very difficult to compute the dual principal graph from Ocneanu’s general machinery.
But in some cases, purely combinatorial arguments determine the dual principal graph.
For example, in the case with index 3 +

√
3, the dual principal graph must be the same

as G1, Okamoto’s graph [Ok], as conjectured at the end of [Ok]. (But Haagerup [H]
proved a much stronger result. That is, if a finite depth subfactor has index 3 +

√
3,

then its principal graph must be Okamoto’s.)
If we choose the graph An from A-D-E’s in the construction above, then we get

the index values (sin2 kπ/N)/(sin2 π/N), same as Wenzl’s index values for his Hecke
algebra subfactors [We]. But Ocneanu’s machinery tells that the construction here gives
a subfactor arising from basic construction of subfactors of type A. This corresponds
to Wenzl’s remark in [We, page 360] and is different from his Hecke algebra subfactors.
Principal graphs of these subfactors were computed by Izumi [I1, Figures 5, 7] and
principal graphs of the Hecke algebra subfactors were computed by unpublished work
of Wenzl and [EK].

For the diagrams D2n, E6, E8, for which flat connections exist, each diagram has the
distinguished vertex ∗ which is characterized as having the smallest entry of the Perron-
Frobenius eigenvector. If we choose a vertex different from ∗ in the construction above,



then the resulting subfactor contains a non-trivial intermediate subfactor corresponding
to the string algebra starting from ∗. In this sense, it is not a “simple” object.

§3 Orbifold construction I: ∗ is fixed.

Now we come to the main topic of this paper: orbifold subfactors. This is an analogue
of orbifold models in IRF model theory [Ko, FG] and the idea is quite simple. That is, if
we have a certain symmetry of a paragroup, we can make a quotient of the paragroup by
the symmetry and produce a new paragroup. In operator algebraic setting, this means
that we take a fixed point algebra of the string algebra by the automorphism with finite
order arising from the paragroup symmetry. Recall that in C∗-algebra theory, an idea
of non-commutative orbifold has been also successful [BEEK1–3, BEK, BK].

First we point out that we have to consider two type of symmetries of a paragroup sep-
arately. The first case is symmetries fixing the distinguished vertex ∗ of the paragroup,
and the second is symmetries moving ∗. Though the second case is more interesting, the
first case is easier, so we work on the first case in this section. This type of symmetry
is also related to Loi’s work [L1], [L2, Lemma 4.2].

In order to keep arguments simple, we assume that the two graphs of the paragroup
have no multiple edges and let σ be a non-trivial automorphism of the graphs which
keeps the connection invariant:

a −−−−→ b� �
c −−−−→ d

=

σ(a) −−−−→ σ(b)� �
σ(c) −−−−→ σ(d)

.

(Because we have no multiple edges, we drop labeling of edges.)
Then this σ defines an automorphism of the string algebra, and this is well-defined on

the double sequence of string algebras because of the invariance of the connection. We
denote this automorphism by σ again and take fixed point algebra Aσ

m,n of each Am,n in
the double sequence. Then Aσ

m,n gives a double sequence of commuting squares, and the
Jones projections are invariant under σ, so we have another double sequence with each
horizontal line defining the Jones tower. Next we would like to check flatness of this
system, but this is automatically satisfied because each algebra in the double sequence
in a subalgebra of an algebra in the original double sequence where we have flatness
and then commutativity is trivial. In this way, we get another subfactor with the same
index and a different principal graph. (It is easy to see that the index is value is kept
in this procedure because the Jones projections are invariant under the symmetry. We
can also appeal to [GHJ] or [Wa, page 227].) The new principal graph is an “orbifold”
graph of the original principal graph. (M. Choda worked on this kind of graph problem
in more abstract settings in [Ch].)

A simple example is as follows. An abelian group Zn is realized as a paragroup as
follows. The two graphs G and H are the same and it has a single odd vertex x and n
single edges with length 1 from x. Each even vertex of G corresponds to an element of



Zn and each of H to an element of Ẑn. The distinguished vertex ∗ corresponds to 0 in
Zn and Ẑn. The connection is given by

i −−−−→ x� �
x −−−−→ j

= exp(2π
√−1ij/n).

(The other types of admissible squares have the values determined by the crossing
symmetry.) Choose a positive integer p which is relatively prime to n and another
positive integer q such that pq ≡ 1 mod n. We define a paragroup symmetry σ by
σ(i) = pi mod n for i ∈ Zn and σ(j) = qj mod n for j ∈ Ẑn. Then the connection
above is invariant under this σ. We then have flatness automatically, so we get many
examples of new principal graphs with integer indices very easily.

Next example of a symmetry fixing ∗ is a Z2-symmetry of A
(1)
odd considered in [IK].

This is related to classification of subfactors with index 4. We label vertices of A
(1)
2n−5

as follows.

A
(1)
2n−5 : a0

/a1 — a2 · · · an−4 — an−3

\
a′
1 — a′

2 · · · a′
n−4 — a′

n−3

\
/an−2

The symmetry σ fixed a0 and an−2, and switches ai and a′
i, 1 ≤ i ≤ n− 3. There are

n− 2 mutually non-equivalent flat connections on this diagram, and they correspond to
locally trivial subfactors with index 4. (So this classification also follows from Connes’
classification of automorphisms [Co].) Then we can prove that the connection is chosen
so that it is invariant under σ, then we can get orbifold subfactors from them. Our new
principal graph is the following D

(1)
n .

D(1)
n :

b0\
b′0

/ b1—b2 · · · bn−4—bn−3
/bn−2

\
b′n−2

For classification of subfactors with the principal graph D
(1)
n , we also have to prove

that all of these n− 2 flat connections are really non-equivalent, and there are nothing
more. But these can be proved with the use of the intertwining Yang-Baxter equation
for the two graphs as in [IK].

Remark 3.1. S. Popa [P3] announced a complete classification of subfactors with
index 4. He gave numbers of conjugacy classes for each possible principal graphs,
including infinite graphs A∞, A∞,∞,D∞, but the number was left open only for D

(1)
n .

(His classification of subfactors with principal graph D
(1)
n was given in terms of certain

3rd cohomology group elements and it was hard to compute the number of conjugacy
classes.) On the other hand, Ocneanu showed a classification table of subfactors with
index 4 in his invited talk at the ICM-90, and in it, he claimed that there is a unique
subfactor with a principal graph D

(1)
n . But our method as above easily shows that the



right number is n−2 and Ocneanu’s announced uniqueness is invalid, and gives the last
missing number in Popa’s list.

§4 Orbifold construction II: ∗ is moved.

Now we work on more interesting orbifold constructions. These are in duality to
the orbifold constructions in §3. First we consider subfactors with principal graph Dn.
Ocneanu announced in 1987 that there is a unique subfactor for each D2n and there
are no subfactors with the principal graph D2n+1 among his announced classification
of subfactors with index less than 4 [O1]. But he has not published his proof. (See
Remark 4.2 below.) Here we show that our orbifold method produces a proof of the
claim above on Dn as in [Ka].

First note that the graph A2n−3 has a Z2-symmetry σ. It can be proved that a
connection on A2n−3 can be chosen so that it is invariant under σ. (It is possible
to choose a connection to be real, but then this is not a right choice because it is not
invariant under σ.) Now we want to apply the same procedure as in §3, but we cannot do
so immediately, because this σ does move the distinguished vertex ∗. That is, we cannot
apply σ even at the starting algebra A0,0 = C of the double sequence of string algebras.
To overcome this difficulty, we modify the construction of the double sequence of string
algebras as follows. We allow strings to start one of ∗ and σ(∗). Multiplication rules and
identification based on connections are kept same. In this way, we get a double sequence
{An,m} of string algebras starting from A0,0 = C⊕C as in [Ka]. Then, we can apply
σ to each Am,n and we get another double sequence Aσ

m,n. It is not hard to see that
this is indeed the double sequence of string algebras of Dn. Thus the flatness problem
of Dn is reduced to some computational problem of the connection of A2n−3. That is,
as in Theorem 2.1 (3), we can prove that flatness of the connection on Dn is equivalent
to the equality that some large partion function has value 1. Now induction shows that
this partition function value is (−1)n, which proves Ocneanu’s announcement on Dn.
This can be understood as follows in our general settings. If the symmetry fixes the ∗,
then the orbifold construction automatically has flatness as in §3, but if the symmetry
does move the ∗, there arises an obstruction for flatness in the orbifold procedure. This
obstruction eliminates D2n+1 but such an obstruction does not exist for D2n.

Furthermore, one can prove that the modification above of the string algebra double
sequence construction still gives the same subfactor of type A2n−3. One way to see this
is that we can compute the principal graph of this subfactor by Ocneanu’s compactness
argument [O3]. Then it is easy to see that the principal graph is A2n−3. Another way is
that we prove the modified construction gives a subfactor with relative McDuff property.
This is done by seeing that the horizontal Jones projections make central sequences in
the subfactor for the ambient factor. (See [Bi].) Then it is easy to see that we get a
conjugate subfactor by cutting the factors by a projection in the subfactor. (Also see
[P1, page 200].) This means that a subfactor with the principal graph D2n is realized
as Nσ ⊂ Mσ, where N ⊂ M has a principal graph A4n−3 and σ is an automorphism
of M with order 2 fixing N globally. (Note that the orbifold construction as in §3
for Dn and Takesaki duality easily produce the following: If Dn principal graph is
realized, the subfactor is of the above form of the simultaneous fixed point algebra
of the A2n−3 subfactor. Thus the difference between D2n and D2n+1 comes from the
difference between A4n−3 and A4n−1.)



Remark 4.1. Impossibility of D2n+1 as a principal graph has also been independently
proved by [I1], [SV]. Their method is to prove inconsistency of decomposition rules of
multiplication of endomorphisms or bimodules for D2n+1. This method was also claimed
by Ocneanu without a proof. For impossibility of E7, the author verified non-flatness
by a computer [Ka], and inconsistency of decomposition rules was verified by [SV],
as Ocneanu announced. Izumi [I1] gave a much simpler proof just by looking at the
Perron-Frobenius eigenvector entry. (This was essentially in [P2, Theorem 3.8].) For
E6, Bion-Nadal [BN] gave a construction, and then Ocneanu’s general machinery easily
produces that there are two and only two subfactors for the E6 principal graph [O1,
O3, Ka]. For E8, Izumi [I2] checked flatness and thus proved that there are two and
only two subfactors for the E8 principal graph. In this way, we now have a complete
proof of classification of subfactors with index less than 4 announced by Ocneanu.

U. Haagerup said to the author that he has also verified this classification by his
method based on bimodules.

Remark 4.2. A. Ocneanu sketched his original proof of flatness of D2n in his lectures
at Tokyo in July of 1990 [O3]. But the details were not clear and the author could
not complete the proof along this line, so the author found a different proof based on
orbifold method in December of 1990 [Ka] as described above. Then in October of 1991,
A. Ocneanu showed further details to the author on his original method and the author
understood his complete proof. We include his arguments in Appendix here because his
method is quite different from ours, and is of another interest. His proof is somewhat
shorter than ours, but it does not give a realization of D2n as a simultaneous fixed point
algebra of A4n−3 and it seems difficult to extend this method to the Hecke algebra
settings while ours does as below. The author thanks Prof. A. Ocneanu for showing
this proof and permitting us to include it here.

H. Wenzl constructed his Hecke algebra subfactors with index values
sin2(Nπ/k)
sin2(π/k)

as

a natural generalization of Jones’ subfactors of type An with index values 4 cos2
π

n + 1
in [We]. It turned out that these subfactors correspond to 2-variable link invariant
(HOMFLY) polynomial [FYHLMO], quantum groups Uq(slN ), and the Jimbo-Miwa-
Okado solutions to the Yang-Baxter equation [JMO1, JMO2]. Now we show that we
can also apply the orbifold construction to Wenzl’s Hecke algebra subfactors [EK].

In order to apply the orbifold method, we have to know the paragroups of the Hecke
algebra subfactors. Wenzl computed the principal graphs of his subfactors in an un-
published work but could not obtain paragroups. We compute the paragroups with
the Yang-Baxter equation in [EK]. Because Wenzl’s representation is a certain trigono-
metric limit of Boltzmann weights of Jimbo-Miwa-Okado [JMO1, JMO2] in the form
of elliptic functions, we still have the Yang-Baxter equation. Roche’s result [R] im-
plies that the face operators are flat when we have the Yang-Baxter equation, and now
the Hecke algebra generators are essentially face operators. This is a typical example
that the Yang-Baxter equation implies flatness. (But in general, the subfactor does not
have good series of generators and thus the Yang-Baxter equation does not produce full
flatness.) Furthermore, Wenzl’s construction of subfactor uses commuting squares of
period N , but the canonical form arising as higher relative commutants should have a



period 2. This means that the construction of Wenzl’s Hecke algebra subfactor is not
in the canonical form in the sesne of Popa and Ocneanu. But by the use of the Yang-
Baxter equation as above and the crossing symmetry, we can compute the paragroup
and modify the construction so that it has a period 2.

Here we show how to proceed in the case N = 3 for the orbifold construction.
Then first we have to modify the double sequence again so that it now starts with
A0,0 = C⊕C⊕C. Then we can define a symmetry σ of order 3 and make a fixed point
algebra Aσ

m,n. Again, flatness for orbifolds can be reduced to computations of certain
partition functions of the original connection. By the Yang-Baxter equation, we can
compute the values. In the case Dn, there was a difference between D2n and D2n+1,
but now it turns out that an obstruction for flatness vanishes in all the cases. It appears
that this difference between N = 2 and N = 3 comes from parity of N . Because Wenzl’s
subfactors are regarded as a generalization of the An-sequence, our construction gives
a “generalized Dn” sequence. (Graphs D were considered in [FG] as a generalization of
Dn-sequence, but our principal graph is only a part of their graphs.) For some examples
of our principal graphs, see [EK].

Appendix: Ocneanu’s original proof of flatness of D2n

Here we include an outline of Ocneanu’s original proof of flatness of D2n along the line
suggested in [O3]. The author thanks him for showing the arguments and permitting
him to include this here. We did not try to supply all the computational details, but
readers familiar with [O3, Ka] should have no difficulty in understanding.

We identify G and H and label some vertices of it as follows.

D2n :
a \
b
/x— · · · · ∗,

Define a connection on this diagram as follows. We start from ∗, and until the vertex
x, we choose a real connection as in the case of diagrams An. (See [O3], for example.)
At the vertex x, we have 3× 3-unitary matrix as follows.

 c11 c12 c13

c21 c22 c23

c31 c32 c33


 ,

where columns are labeled by ·, a, b from the left to the right and rows are labeled by ·, a, b
from the top to the bottom. We choose the connection so that c11, c12, c13, c21, c31 ∈ R
and c22 = c33 = c̄23 = c̄32. (This is possible. See [O3, IV.2] and [Ka, §3]. Note that
this choice of gauges is different from the standard one in [O1, O3, Ka].) We fix this
connection. Note that this connection is invariant under the graph automorphism σ
flipping a and b.

We make a double sequence of string algebras starting from ∗. Denote by q, q′

horizontal strings (∗— · · ·—x—a, ∗— · · ·—x—a) and (∗— · · ·—x—b, ∗— · · ·—x—b) re-
spectively. (Each string has length 2n− 2.) We also denote by p, p′ the vertical strings
with the same expressions. Note that p+p′ is a flat projection orthogonal to the vertical
Jones projections e1, e2, · · · , e2n−3. Then q(p+ p′)q can be identified with a string with
length 2n − 2 starting from a. We can express this as a sume of mutually orthogonal



projections by decomposing it according to the endpoints of strings. Then we have the
following.

Claim. For each n, one of the following holds under the situation above.
(1) If the endpoint for q(p + p′)q is a, then the corresponding projection is 0 and if

the endpoints for q(p + p′)q is not a, then the corresponding projection is of rank 1.
(2) If the endpoint for q(p + p′)q is b, then the corresponding projection is 0 and if

the endpoints for q(p + p′)q is not b, then the corresponding projection is of rank 1.

Furthermore, we have the same claim for q′(p+p′)q′, and if we have (1) [resp. (2)] for
q(p + p′)q, then we have (2) [resp. (1)] for q′(p + p′)q′. This claim is proved by looking
at the embeddings of the Jones projections into the string algebra of D2n starting from
a or b. (See [GHJ], [Ok, page 99].)

Now it is enough to prove

∗ −−−−→ · · · −−−−→ a ←−−−− · · · ←−−−− ∗� �
...

...� �
a −−−−→

ξ
· · · −−−−→ y ←−−−− · · · ←−−−−

η
b

= 0

for all the ξ, η, y, where the diagram above is of size (2n− 2)× 2(2n− 2). We prove this
as follows.

If y = a or y = b, then the claim above proves the desired equality. Suppose y �= a, b.
Again by the claim above, it is enough to prove the equality above for a single σ and
η = σ(ξ) after a certain change of basis in the path Hilbert space. Because q + q′ is flat,
and the connection is σ-invariant, we get the following identities.

∗ −−−−→ · · · −−−−→ a ←−−−− · · · ←−−−− ∗� �
...

...� �
a −−−−→

ξ
· · · −−−−→ y ←−−−− · · · ←−−−−

σ(ξ)
b



= −

∗ −−−−→ · · · −−−−→ b ←−−−− · · · ←−−−− ∗� �
...

...� �
a −−−−→

ξ
· · · −−−−→ y ←−−−− · · · ←−−−−

η
b

= −

∗ −−−−→ · · · −−−−→ a ←−−−− · · · ←−−−− ∗� �
...

...� �
b −−−−→

σ(ξ)
· · · −−−−→ y ←−−−− · · · ←−−−−

ξ
b

= −

∗ −−−−→ · · · −−−−→ a ←−−−− · · · ←−−−− ∗� �
...

...� �
a −−−−→

ξ
· · · −−−−→ y ←−−−− · · · ←−−−−

σ(ξ)
b

.

This implies that

Re

∗ −−−−→ · · · −−−−→ a ←−−−− · · · ←−−−− ∗� �
...

...� �
a −−−−→

ξ
· · · −−−−→ y ←−−−− · · · ←−−−−

σ(ξ)
b

= 0.

Now the following claim finishes the proof.

Claim. Each 2×2-diagram with even vertices of D2n on the boundary has a real value.

This claim is checked directly.
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