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Abstract

Ocneanu has obtained a certain type of quantized Galois correspondence
for the Jones subfactors of type An and his arguments are quite general. By
making use of them in a more general context, we define a notion of a subequiv-
alent paragroup and establish a bijective correspondence between generalized
intermediate subfactors in the sense of Ocneanu and subequivalent paragroups
for a given strongly amenable subfactors of type II1 in the sense of Popa, by en-
coding the subequivalence in terms of a commuting square. For this encoding,
we generalize Sato’s construction of equivalent subfactors of finite depth from
a single commuting square, to strongly amenable subfactors.

We also explain a relation between our notion of subequivalent paragroups
and sublattices of a Popa system, using open string bimodules.

1 Introduction

Our aim here is to establish the “quantum” version of the Galois correspondence for
subfactors using Ocneanu’s work in a more general context and encode subequivalence
of paragroups in terms of a commuting square.

The Galois correspondence for group actions has been studied in detail in various
forms. It gives a bijective correspondence between intermediate algebras of RG ⊂ G
or R ⊂ R � G for a group G acting on a von Neumann algebra R and subgroups
of G. (See [12] for one of the most recent forms.) We would like to “quantize” this
correspondence for a subfactor N ⊂ M .

Ocneanu’s paragroup gives a combinatorial characterization of higher relative com-
mutants for a “good class” of subfactors and a certain quantization of a classical Galois
group for a general subfactor of finite index, and this gives a complete invariant for
strongly amenable subfactors of type II1 by Popa’s deep classification theorem [24].
So, a natural attempt to quantize the classical Galois correspondence is to establish
a bijective correspondence between “subparagroups” of the paragroup for a subfactor
and intermediate algebras of N ⊂ M , but it is not clear at all what “subparagroups”
mean. We will define an appropriate notion of a subparagroup and call it a subequiv-
alent paragroup, since it is based on a notion of equivalence for system of bimodules,
due to Ocneanu, and also show that we will also have to “quantize” the notion of
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intermediate algebras as in [21], in order to get the “Galois correspondence”. The
essential tools are Ocneanu’s several work, particularly [21], and Sato’s work on com-
muting square, but we have to generalize their work first because they have worked
on subfactors with finite depth, rather than with strong amenability. This is a natural
extension of Ocneanu’s work on generalized intermediate subfactors in [21].

A part of this work was done while the author visited Odense University and
University of Copenhagen in the spring of 1997 and also while the author visited
Università di Roma “Tor Vergata” in the fall of 1998. The author thanks Professors
U. Haagerup, C. Winsløw, and R. Longo, respectively, for financial supports and
hospitality. The author thanks Professor A. Ocneanu for his comments on the first
draft of this paper.

2 Equivalent paragroups

First, we review some basic facts about equivalent paragroups for extremal subfactors
N ⊂ M of type II1 (with finite index). Here the extremality is in the sense of [23].
Nothing is essentially new here, but our aim here is to give precise definitions, since
we do not assume the finite depth condition which is usually assumed in this kind of
theory.

Ocneanu has two equivalent axiomatizations of paragroups as in [18], [20]. (See
[8, Chapters 10, 12].) For our purpose here, it is more convenient to use the approach
in [20] based on fusion rule algebras and quantum 6j-symbols.

In this setting, a paragroup is a combination of a fusion rule algebra linearly
generated by at most countable objects {Xi} having two kinds of attributions {A, B}
on the left and right of each object, a dimension function assigning a positive number
[Xi]

1/2 to each object Xi and giving an algebra homomorphism from the fusion rule
algebra to R, quantum 6j-symbols on this fusion rule algebra, and a generator AXB

which is a finite linear combination of objects {Xi} with positive integer coefficients.
(See the formulation in [8, Chapter 12], particularly about the axioms of quantum 6j-
symbols. What we really have is an equivalence class of quantum 6j-symbols, rather
than quantum 6j-symbols themselves.) As in [28], we call such a paragroup an A-B
paragroup. Note that it is assumed in [8], [28] that the set {Xi} of the objects is finite,
but we now allow it to be countable here. It is required that for X and Y among
the Xi, the product formula X · Y =

∑
Z NZ

X,Y Z have only finitely many non-zero
coefficients NZ

X,Y .
We say that an object having a left A-attribution and a right B-attribution is of

A-B type. The other types, A-A, B-A, B-B are defined similarly. Since we always
use Popa’s classification theorem [24], we may and do identify objects with bimodules.
For a paragroup π1, we set the global index [[π1]] of π1 to be

∑
AXA

[AXA] where the
sum is taken over all the objects X of A-A type. If we have infinitely many objects,
then the global index is infinity. It was first noted by Ocneanu [20] and is now fairly
easy to see that this global index is equal to

∑
BYB

[BYB ] where the sum is taken over
all the objects Y of B-B type.
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If we consider only objects of A-A type [resp. B-B type] for an A-B paragroup,
we get a fusion rule algebra with quantum 6j-symbols. We call such a system the
A-A subsystem [resp. B-B subsystem] of the A-B paragroup.

Recall how to construct such a set of data from an extremal subfactor N ⊂ M of
type II1 with finite index. We first have a bimodule NL2(M)M . Using the relative
tensor product, we get finite tensor powers · · ·⊗N L2(M)⊗M L2(M)⊗N L2(M)⊗M · · ·
and make irreducible decompositions. We get four kinds of bimodules; N -N , N -M ,
M-N , M-M . These are the objects we have for the fusion rule algebra. (The finite
depth assumption means that we get only finitely many equivalence classes in this
way.) The additivity and multiplicativity of the dimension function follows from the
extremality assumption by [24]. The generator of the fusion rule algebra is NL2(M)M .
We consider this type of paragroups in this paper.

It is easy to see that if we start with an extremal subfactor N ⊂ M of type II1
with finite index, we have a paragroup as above. By [25], we know that if we have
a paragroup in the above sense, we have an extremal subfactor N ⊂ M of type II1
with finite index producing the paragroup as above. We say that a paragroup is finite
[resp. strongly amenable] if it arises from a subfactor of finite depth [resp. strong
amenability in the sense of Popa [24]]. Popa’s major theorem in [24] says that a
paragroup is a complete invariant for strongly amenable extremal subfactors of type
II1 with finite index.

We next define equivalent paragroups. If we start with a subfactor N ⊂ N�G = M
with a finite group G acting on N freely, we get a finite system of N -N bimodules
labelled with the group elements in G, and a finite system of M-M bimodules labelled
with the elements in the group dual Ĝ. In this example arising from a group crossed
product, the systems of N -N bimodules and M-M bimodules are mutually dual in
the usual sense in the group theory, and we think that the two systems contain the
same amount of information in the sense that we can recover one system from the
other. Based on this idea, we make the following definition of equivalence of systems
of bimodules.

Definition 2.1 Two fusion rule algebras with dimension functions and quantum 6j-
symbols are said to be equivalent, if they appear as an A-A subsystem and a B-B
subsystem of a paragroup.

This definition is based on the one of Ocneanu in [20] for the finite depth case.
Based on this, we define equivalent paragroups as follows. See Sato’s definition of
equivalent subfactors with finite depth in [28]. It is not difficult to show that this
indeed gives an equivalence relation.

Definition 2.2 An A-B paragroup and a C-D paragroup are said to be equivalent
if the corresponding A-A subsystem and C-C subsystem are equivalent.

Of course, we could use the B-B subsystem and the D-D subsystem here. We
give some basic examples of equivalent paragroups.
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Example 2.3 Let N ⊂ M be a subfactor as above. Let

N ⊂ M ⊂ M1 ⊂ M2 ⊂ M3 ⊂ · · ·

be the corresponding Jones tower. It is then easy to see that the paragroups corre-
sponding to N ⊂ M and Mk ⊂ Ml for k < l are equivalent. It is thus trivial to note
that the Jones index is not an invariant for this equivalence.

Example 2.4 Let R be a II1 factor, G a finite group acting on R freely, and H a
subgroup of G. Suppose that H does not contain a non-trivial normal subgroup of G.
(Such a subgroup is said to be relatively simple.) Then the paragroups corresponding
to subfactors R ⊂ R � G and R � H ⊂ R � G are equivalent.

More generally, the paragroup of a subfactor N ⊂ M with finite index and fi-
nite depth is often, but not always, equivalent to the paragroup of its intermediate
subfactor P ⊂ M for P ⊃ N .

Example 2.5 Let N ⊂ M be a subfactor of the hyperfinite II1 factor with finite
index and finite depth. We denote its opposite subfactor by Nopp ⊂ Mopp. Then
the paragroup of the subfactor N ⊗ Nopp ⊂ M ⊗ Mopp is equivalent to the one for
Ocneanu’s asymptotic inclusion M ∨ (M ′∩M∞) ⊂ M∞, if the fusion graph of N ⊂ M
is connected. The asymptotic inclusion has been introduced in [18], [19], and it is
a subfactor analogue of the quantum double construction of Drinfel′d as noticed by
Ocneanu. See [8, Chapters 12, 13].

Ocneanu has generalized in [20] the Turaev-Viro construction of 3-dimensional
topological quantum field theory based on triangulation, using quantum 6j-symbols
arising from a subfactor of finite index and finite depth. He has also found in [20] that
equivalent paragroups in the above sense produce the same 3-dimensional topological
quantum field theory. (See [8, Chapter 12].)

At the end of this section, we mention the work of Sato [26], [27], [28] on a question
raised by V. F. R. Jones, since here we will generalize a part of his work. The problem
is as follows.

Let
A00 ⊂ A01

∩ ∩
A10 ⊂ A11

be a finite dimensional non-degenerate commuting square with an appropriate trace.
Then vertical and horizontal basic constructions are compatible so that we get a
double sequence {Akl}kl of finite dimensional C∗-algebras. Then using the trace, we
get II1 factors A∞,l and Ak,∞ as the weak closures in appropriate GNS-representations.
Jones asked what kind of relations we have for the two “horizontal” and “vertical”
subfactors A0,∞ ⊂ A1,∞ and A∞,0 ⊂ A∞,1.

Sato’s first answer in [26] is that the two subfactors have the same global indices,
in particular, one is of finite depth if and only if so is the other. The global index of a
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subfactor N ⊂ M is a sum of the Jones indices [NXN ] over N -N bimodules X arising
from NMM as above and this is a measure for a size of a paragroup. Note that the
global index is finite if and only if the original subfactor is of finite depth. Sato has
further proved the following theorem in [27], [28].

Theorem 2.6 Let N ⊂ M and P ⊂ Q be subfactors of the hyperfinite II1 factor with
finite index and finite depth. Then the pair of these two subfactors arise from a single
commuting square as above if and only if N ⊂ M and P opp ⊂ Qopp have equivalent
paragroups.

3 Subequivalent paragroups and the quantum Galois correspondence

Based on the above notion of equivalence of paragroups, we introduce a notion of
subequivalence of paragroups which gives a proper setting for our quantum Galois
correspondence.

Definition 3.1 Let π1, π2 be an A-B paragroup and a C-D paragroup, respectively.
Let S1, S2 be the corresponding A-A subsystem and C-C subsystem. If we have an A-
C paragroup π3 such that the A-A subsystem S̃1 of π3 contains a fusion rule subalgebra
S ′

1 such that the quantum 6j-symbols restricted on S ′
1 is equivalent to those on S1 and

the C-C subsystem of π3 is isomorphic to S2 with equivalent quantum 6j-symbols,
then we say that π1 is subequivalent to π2.

Note that we could use the B-B subsystem or the D-D subsystem in the above
definition – we get the same definition. We believe that the above is the right way to
define subparagroups, but we use the terminology subequivalence because it involves
equivalence. It may seem that we could or should define a subparagroup by requiring
that the A-A subsystem is isomorphic to a subsystem of the C-C subsystem in the
above definition, but then using the A-A subsystem and using the B-B subsystem
do not give the same definition any more. It may then seem that we could require
the A-A subsystem or the B-B subsystem is isomorphic to a subsystem of the C-C
subsystem or the D-D subsystem as a definition of a “subparagroup”, but then a
“subparagroup” of a “subparagroup” would not be a “subparagroup” of the original
paragroup, while we have the following proposition from our definition fairly easily.

Proposition 3.2 (1) If a paragroup π1 is subequivalent to a paragroup π2 and π2 is
subequivalent to a paragroup π3, then π1 is subequivalent to π3.

(2) If a paragroup π1 is subequivalent to a paragroup π2, π2 is subequivalent to π1,
and π1 has a finite global index, then π1 and π2 are equivalent.

Proof (1) It is easy to show the subequivalence of π1 to π3 using appropriate gen-
erators of the paragroups.

(2) The finiteness of the global index imply that the global indices of the two
paragroups are equal. Then the fusion rule subalgebra in the definition of the sube-
quivalence cannot be proper and we get the conclusion. Q.E.D.
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A recent theorem of Ocneanu [22] implies that we have only finitely many isomor-
phism classes of irreducible subequivalent paragroups for a given finite paragroup,
since we have an upper bound for the global index. (Here we say that a paragroup
is irreducible if the corresponding subfactor has a trivial relative commutant. This
condition is equivalent to the requirement that the generator of the paragroup is an
irreducible object.) Also see [17] on this finiteness.

It is trivial to have a notion of an intermediate subfactor for a subfactor N ⊂ M ,
but this notion is not appropriate for our setting. The following notion due to Ocneanu
in [21] turns out to be the right “quantization” of the notion of intermediate subfactors.

Definition 3.3 Let N ⊂ M be a subfactor and

N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · ·
the corresponding Jones tower. A subfactor A ⊂ B is called a generalized intermediate
subfactor of N ⊂ M if it is realized as pN ⊂ A ⊂ B ⊂ pMkp for some non-zero
projection p ∈ N ′ ∩ Mk.

Note that the projection p in the above does not have to be a minimal projection.
Then we have the following theorem.

Theorem 3.4 Let N ⊂ M be a strongly amenable and extremal subfactor of the
hyperfinite II1 factor with finite index and π the corresponding paragroup.

Then the isomorphism classes of subequivalent paragroups of π are in a bijective
correspondence to the isomorphism classes of generalized intermediate subfactors of
N ⊂ M . This subequivalence can be “encoded” in a commuting square.

Of course, we rely here on Popa’s classification theorem [24]. We give the corre-
spondence in terms of a commuting square in the next section. The correspondence
from a generalized intermediate subfactor to a subequivalent paragroup is almost
trivial from the definition, so we omit this direction. For the other direction, we use
Sato’s technique in [28] to construct a certain commuting square and in this way, we
can get a combinatorial and concrete description of the subequivalence in terms of
commuting squares, rather than just a correspondence in both directions. For this,
we need a more subtle estimates of the higher relative commutants than in [28] based
on amenability. We give a proof in a more conceptual context in the next section.

Ocneanu has obtained this kind of correspondence for generalized intermediate
subfactors of the Jones subfactors of type An in [21] by a general argument. We make
use of his arguments in a more general context in order to get a specific commuting
square for strongly amenable subfactors.

4 Encoding (sub)equivalence in terms of a commuting square

For our proof of Theorem 3.4, we will show that (sub)equivalence of paragroups can
be encoded in a single bi-unitary connection, or a commuting square.
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We will first need a generalization of Theorem 3.3 in [28] for strongly amenable
paragroups. Note that the proof of this theorem in [28] contains a gap, as pointed
out by S. Goto, so we need the following type of arguments even in the finite depth
case. We start with the following easy lemma.

Lemma 4.1 Let N ⊂ M be a strongly amenable and extremal subfactor of type II1

in the sense of Popa and N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · the Jones tower. For any
intermediate subfactor N ⊂ R ⊂ M , the sequence of commuting squares

M ′ ∩ Mk ⊂ R′ ∩ Mk ⊂ N ′ ∩ Mk

∩ ∩ ∩
M ′ ∩ Mk+1 ⊂ R′ ∩ Mk+1 ⊂ N ′ ∩ Mk+1

∩ ∩ ∩
...

...
...

recovers N ⊂ R ⊂ M uniquely.

Proof Let · · · ⊂ N2 ⊂ N1 ⊂ N ⊂ M be a tunnel with the generating property
in the sense of [24]. Then the inclusion

∨
k(N

′
k ∩ N) ⊂ ∨

k(N
′
k ∩ R) ⊂ ∨

k(N
′
k ∩ M)

is uniquely determined by the commuting square in the statement of the lemma.
Since the smallest and largest algebras here are equal to N and M , respectively, by
the generating property, we also have

∨
k(N

′
k ∩ R) = R from the commuting square

condition. (See the proof of Theorem 3.3 in [16], for example.) Q.E.D.

We call the above sequence of commuting square the standard invariant of N ⊂
R ⊂ M .

Suppose that we have mutually equivalent strongly amenable paragroups of types
A-C and C-D with generators AXC and CYD, respectively, with system of the C-C
bimodules in common. Let AZD = AX⊗C YD. We make the following double sequence
of finite dimensional commuting squares similarly to the construction in section 3 in
[28].

End(∗) ⊂ End(X̄) ⊂ End(X̄X) ⊂ · · · → P
∩ ∩ ∩ ∩

End(∗) ⊂ End(Ȳ ) ⊂ End(Ȳ X̄) ⊂ End(Ȳ X̄X) ⊂ · · · → Q
∩ ∩ ∩ ∩ ∩

End(Y ) ⊂ End(Y Ȳ ) ⊂ End(Y Ȳ X̄) ⊂ End(Y Ȳ X̄X) ⊂ · · · → Q1

∩ ∩ ∩ ∩ ∩
End(Ȳ Y ) ⊂ End(Ȳ Y Ȳ ) ⊂ End(Ȳ Y Ȳ X̄) ⊂ End(Ȳ Y Ȳ X̄X) ⊂ · · · → Q2

∩ ∩ ∩ ∩ ∩
...

...
...

...
...

Here we dropped A, C, D and the symbol ⊗ for simplicity. Note that the ∗ in the
first line is C∗C and the ∗ in the second line is D∗D. For the horizontal direction,
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we have made relative tensor products with Ȳ , X̄,X, X̄, X, . . ., respectively, from the
right at each step when we go from the left to the right in the double sequence, and
for the vertical direction, we have made relative tensor products with Ȳ , Y, Ȳ , Y, . . .,
respectively, from the left at each step when we go from the top to the bottom in
the double sequence. Here the rightmost column has the weak closures in the GNS-
representations of the increasing unions with respect to the trace. For saving the
space, we now drop “End” and the inclusion symbol, but put attributions in writing,
so we mean the above double sequence by the diagram below.

C∗C CX̄A CX̄XC · · · → P

D∗D DȲC DȲ X̄A DȲ X̄XC · · · → Q

CYD CY ȲC CY Ȳ X̄A CY Ȳ X̄XC · · · → Q1
...

...
...

...

We label this double sequence of finite dimensional algebras as {Akl}kl with k ≥ 0, l ≥
−1, (k, l) 
= (0,−1). (The algebra End(∗) in the first line is A00 and the one End(∗)
in the second line is A1,−1.) We then set Bkl = A2k,2l for k, l ≥ 0. Then using X̄X,
we can extend the double sequence {Bkl}k,l≥0 to the one {Bkl}k+l≥0, l≥0. For example,
B−1,2 = End(X̄X) and the embedding B−1,2 ⊂ B0,2 is given by the left multiplication
of X̄X. In general the embedding Bkl ⊂ Bk,l+1 is given by the right multiplication
of X̄X and the embedding Bkl ⊂ Bk+1,l is given by the left multiplication of X̄X
for k ≤ −1. In the above abbreviated writing, this double sequence is represented as
follows.

· · · ...

C∗C · · · → B−2,∞
C∗C CX̄XC · · · → B−1,∞

C∗C CX̄XC CX̄XX̄XC · · · → B0,∞
CY ȲC CY Ȳ X̄XC CY Ȳ X̄XX̄XC · · · → B1,∞

CY Ȳ Y ȲC CY Ȳ Y Ȳ X̄XC CY Ȳ Y Ȳ X̄XX̄XC · · · → B2,∞
...

...
...

...

We denote the weak closures in the GNS-representations with respect to the trace
by Ak,∞, B∞,l, and so on.

Lemma 4.2 In the above setting, the inclusion B0,∞ ⊂ B1,∞ is a hyperfinite type II1

subfactor with finite index and its Jones tower is given by B0,∞ ⊂ B1,∞ ⊂ B2,∞ ⊂ · · ·.
We also have B ′

0,∞ ∩ Bk,∞ = Bk,0 for k ≥ 0.

Proof By the strong amenability of the A-C paragroup, Bk,∞ are hyperfinite II1
factors. Then as usual, we get the first half of the statement.

For the second half, we apply the argument of [19, page 35]. (Also see the proof
of Theorem 3.4 in [16], which is quite similar.) The inclusion Bk,0 ⊂ B ′

0,∞ ∩ Bk,∞ is
by the standard flatness argument. (See [8, Sections 10.5, 12.5], for example.) For
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the converse inclusion, take x ∈ B ′
0,∞ ∩ Bk,∞ and set xn = EBkn

(x) ∈ B ′
0n ∩ Bkn for

n ≥ 0. Then xn ∈ B∞,n is written as a finite sum
∑

i aifn−1bi, where ai, bi ∈ B∞,n−1

and fn−1 is the horizontal Jones projection, for n ≥ 1. Then we have

‖x − xn‖2 ≥ ‖EB′
−(n−1),∞∩B∞,∞(x − xn)‖2

= ‖x − ∑

i

aiEB′
−(n−1),∞∩B∞,∞(fn−1)bi‖2

= ‖x − [X]−2
∑

i

aibi‖2

= ‖x − EB∞,n−1(xn)‖2

= ‖x − xn−1‖2

because
EB′

−(n−1),∞∩B∞,∞(fn−1) = EB′
−(n−1),∞∩B0,∞(fn−1) = [X]−2

follows from the strong amenability of the A-C paragroup. Since limn ‖x − xn‖2 = 0,
we get ‖x − xn‖2 = 0 for all n ≥ 1, and in particular x = x1 ∈ Bk,1. Then as in the
standard compactness argument of Ocneanu [19] (also see [8, Section 11.4]), we get
x = x0 ∈ Bk,0. Q.E.D.

Note that the sequence · · · ⊂ B−2,∞ ⊂ B−1,∞ ⊂ B0,∞ is a tunnel, but B0,∞ ⊂ B1,∞
is not the basic construction of B−1,∞ ⊂ B0,∞.

With this lemma, we can prove the following.

Proposition 4.3 The inclusion P ⊂ Q constructed as above gives a hyperfinite sub-
factor of type II1 and its paragroup is the C-D paragroup we start with.

Proof Lemma 4.2 shows factoriality of P,Q1, Q3, . . .. We also know that Q′ ∩ Q ⊂
P ′ ∩Q1 = A2,0 by Lemma 4.2 and then the center of Q is contained in A1,0. It is easy
to see that any non-trivial projection in A1,0 is not in the center of Q, so we conclude
that Q is also a factor. Similarly, we can prove that all Qk’s are factors. Then it is
easy to see that P ⊂ Q ⊂ Q1 ⊂ Q2 ⊂ · · · is the Jones tower of P ⊂ Q. Lemma 4.2
now shows that the higher relative commutants

P ′ ∩ P ⊂ P ′ ∩ Q ⊂ P ′ ∩ Q1 ⊂ P ′ ∩ Q2 ⊂ · · ·

is given by {Ak,0}k≥0.
We next consider Q′ ∩ Q2k+1 whose dimension is equal to that of P ′ ∩ Q2k. The

standard flatness argument gives A2k+2,−1 ⊂ Q′ ∩ Q2k+1 and we know that these two
algebras now have the same dimensions, so we must have the equality A2k+2,−1 =
Q′ ∩ Q2k+1. This gives the conclusion Ak+1,−1 = Q′ ∩ Qk for all k. Thus the left two
columns of the above double sequence gives the higher relative commutants of P ⊂ Q.
This proves the lemma. Q.E.D.
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For proving Theorem 3.4, we make the following setting. Suppose we have three
strongly amenable paragroups of type A-B, A-C , and C-D with generating bimodules

AXB, AYC and CZD, respectively. We assume that the A-A systems of the A-B and A-
C paragroups are the same and the C-C system of the C-D paragroup is a subsystem
of that of the A-C paragroup. In this way, the C-D paragroup is subequivalent to
the A-B paragroup. (The equivalence of the A-B paragroup and the A-C paragroup
implies that if one of the two is strongly amenable, so is the other by [24]. If these
are strongly amenable, we know that the C-D paragroup is amenable by [11], but we
do not know whether it is “strongly” amenable or not, so we have assumed in the
above that the C-D paragroup is also strongly amenable.) We then construct four
hyperfinite II1 factors N ⊂ P ⊂ Q ⊂ M defined by the following diagram. (The
factoriality follows from the argument in the proof of Proposition 4.3.)

A∗A AXB AXX̄A AXX̄XB · · · → N

C ȲA C Ȳ XB CȲ XX̄A CȲ XX̄XB · · · → P

DZ̄ȲA DZ̄Ȳ XB DZ̄Ȳ XX̄A DZ̄Ȳ XX̄XB · · · → Q

BX̄Y ZZ̄ȲA BX̄Y ZZ̄Ȳ XB BX̄Y ZZ̄Ȳ XX̄A BX̄Y ZZ̄Ȳ XX̄XB · · · → M

By Lemma 4.2, it is easy to compute the higher relative commutants of N ⊂ M since
the bimodule BX̄Y ZZ̄ȲA decomposes into a finite sum of B-A bimodules in the A-B
paragroup, and then it is also easy to see that we can obtain the subfactor N ⊂ M
as a cut-down of some basic construction of the subfactor corresponding to the A-B
paragroup. So in order to complete the proof, all we have to show is that the subfactor
P ⊂ Q has the original C-D paragroup.

We now ignore M in the above construction and compute the “standard invariant”
for N ⊂ P ⊂ Q considered in Lemma 4.1. For this purpose, we consider the dou-
ble sequence of commuting squares of finite dimensional algebras as in the following
diagram. That is, we add extra algebras to the left and also continue the sequence
vertically.

A∗A AXB · · · → N

C∗C C ȲA CȲ XB · · · → P

D∗D DZ̄C DZ̄ȲA DZ̄Ȳ XB · · · → Q

AY ZD AY ZZ̄C AY ZZ̄ȲA AY ZZ̄Ȳ XB · · · → Q1

DZ̄Ȳ Y ZD DZ̄Ȳ Y ZZ̄C DZ̄Ȳ Y ZZ̄ȲA DZ̄Ȳ Y ZZ̄Ȳ XB · · · → Q2
...

...
...

...
...

↓ ↓ ↓ ↓
R0 R1 R2 Q∞

Then as above, we know that N ⊂ Q ⊂ Q1 ⊂ Q2 ⊂ · · · is the Jones tower of
N ⊂ Q. The proof of Propostition 4.3 implies that we have R0 = Q′ ∩ Q∞ and
R2 = N ′ ∩ Q∞, and thus the subfactor N ⊂ Q is strongly amenable. The standard
flatness argument gives R1 ⊂ P ′ ∩ Q∞. We also know from Lemma 4.1 that the
inclusion N ⊂ P ⊂ Q is anti-isomorphic to Q′ ∩ Q∞ ⊂ P ′ ∩ Q∞ ⊂ N ′ ∩ Q∞. By
comparing the indices of R0 ⊂ R1 ⊂ R2, which can be computed from the commuting
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square easily, and those of Q′ ∩ Q∞ ⊂ P ′ ∩ Q∞ ⊂ N ′ ∩ Q∞, we conclude that
R1 = P ′ ∩ Q∞, that is, the second column from the left in the above diagram gives
the relative commutants

P ′ ∩ P ⊂ P ′ ∩ Q ⊂ P ′ ∩ Q1 ⊂ P ′ ∩ Q2 ⊂ · · · .
So the three left columns of the above diagram give the “standard invariant” for
N ⊂ P ⊂ Q considered in Lemma 4.1.

We next construct the following double sequence.

A∗A AYC AY ȲA · · · → Ñ

C∗C C ȲA CȲ YC CȲ Y ȲA · · · → P̃

D∗D DZ̄C DZ̄ȲA DZ̄Ȳ YC DZ̄Ȳ Y ȲA · · · → Q̃

AY ZD AY ZZ̄C AY ZZ̄ȲA AY ZZ̄Ȳ YC AY ZZ̄Ȳ Y ȲA · · · → Q̃1

DZ̄Ȳ Y ZD DZ̄Ȳ Y ZZ̄C DZ̄Ȳ Y ZZ̄ȲA DZ̄Ȳ Y ZZ̄Ȳ YC DZ̄Ȳ Y ZZ̄Ȳ Y ȲA · · · → Q̃2
...

...
...

...
...

...

It is again easy to see that Ñ ⊂ Q̃ ⊂ Q̃1 ⊂ Q̃2 ⊂ · · · is the Jones tower of Ñ ⊂ Q̃.
Then the proof of Proposition 4.3 shows that three left columns of the above diagram
give the standard invariant of Ñ ⊂ P̃ ⊂ Q̃ and we see that the standard invariants for
N ⊂ P ⊂ Q and Ñ ⊂ P̃ ⊂ Q̃ are the same. Thus Lemma 4.1 shows that these two
inclusions are isomorphic, and in particular, the two subfactors P ⊂ Q and P̃ ⊂ Q̃ are
isomorphic. Proposition 4.3 then implies that the paragroup of P̃ ⊂ Q̃ is the original
C-D paragroup we have started with. Thus we have completed the proof of Theorem
3.4.

Suppose that the C-C subsystem of the C-D paragroup above now coincides with
the C-C subsystem of the A-C paragroup, thus the A-B paragroup and the C-D
paragroup are equivalent. Then in the above construction of P ⊂ Q, we can inter-
change the roles of the two paragroups and get the following corollary, which is a
generalization of Theorem 3.3 in [28].

Corollary 4.4 Suppose the two strongly amenable paragroups are equivalent as above.
Then we can construct a double sequence of commuting squares as in [28, Theorem
3.3] so that the “horizontal” and “vertical” subfactors give the C-D paragroup and
the opposite of the A-B paragroup, respectively, which we start with.

In this sense, we may regard the commuting squares used for the construction of
P ⊂ Q “encodes” the (sub)equivalence. Note that if we have only subequivalence,
not equivalence, in the above construction, the roles of the A-B paragroup and the
C-D paragroup are not symmetric, because in that case the “vertical limits” are not
factors in general due to disconnectedness of the Bratteli diagrams.

5 Examples and remarks

The most trivial example is as follows.
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A11

N -N bimodules

N -N bimodules

M-M bimodules

The G-H-J subfactor

E6

E6

�
� same systems

�

�

dual systems

� fusion subalgebra

� fusion subalgebra

(complex conjugate)
�

�

Figure 1: E6 as a subequivalent paragroup of A11

Example 5.1 Let R be the hyperfinite II1 factor, G a finite group acting on R freely,
and H a subgroup of G. Then subfactors R ⊂ R � H and R � H ⊂ R � G are both
subequivalent to R ⊂ R � G.

In this example, the subfactor R ⊂ R�H should corresponds to a “subgroup” and
R � H ⊂ R � G corresponds to a “group quotient”, but in our setting this distinction
disappears.

In [6], [15], we have introduced the orbifold construction for subfactors. The easiest
case of the orbifold construction is the subfactor of type D2n arising from the one of
type A4n−3. In this case, the paragroup of type A4n−3 contains a paragroup given by
the group A4n−3. The orbifold construction gives D2n as the quotient of A4n−3 by this
Z/2Z. Both paragroups D2n and Z/2Z turn out to be subequivalent paragroups of
A4n−3 and thus the corresponding subfactors are realized as generalized intermediate
subfactors of the subfactor of type A4n−3. Again here, we have no distinction of a
subsystem and a quotient.

In [21], Ocneanu has obtained a list of subequivalent systems of bimodules of the
system of bimodules arising from the Jones subfactors of type An [13]. For example,
the paragroups corresponding to the Dynkin diagrams E6 and E8 are subequivalent
paragroups of those corresponding to E11 and A29. The equivalence in these examples
are given in terms of the Goodman-de la Harpe-Jones subfactors in [10, Section 4.5].
This example for the case of E6 and A11 was first found in [16] and graphically
displayed as in Fig. 1, which appeared in [14] in a slightly different context.
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In [7], we have shown that the E7 commuting squares give a subfactor with the
D10. This computation can be interpreted as follows in the above context. The D10

fusion rule algebra has a non-trivial symmetry as explained in [5]. This gives a non-
trivial equivalence between the two identical systems of the D10 paragroup. This
equivalence is encoded in the E7 commuting square.

More examples in connection to conformal inclusions will be discussed in a forth-
coming paper [4] based on [2], [3].

6 Sublattices of a standard λ-lattice

Popa [25] has given a complete characterization of double sequences of commuting
squares arising as higher relative commutants of extremal subfactors. From the view-
point of paragroup theory, his axioms give a flat connection on (possibly infinite)
graphs. He calls such a double sequence a standard λ-lattice for index λ−1. Then we
have a natural notion of a sublattice of a standard λ-lattice in the sense that each
algebra of the sublattice is a subalgebra of the λ-lattice. Since the flatness condition
trivially holds when we pass to a sublattice from a standard λ-lattice, a sublattice of
a standard λ-lattice is also a standard λ-lattice in itself. We can naturally define a
notion of index for sublattices. Then we have the following.

Theorem 6.1 Let N ⊂ M and P ⊂ Q be subfactors of the hyperfinite II1 factor with
finite index, extremality and strong amenability. Suppose that the standard λ-lattice
for N ⊂ M is a sublattice of that for P ⊂ Q with finite index. Then the paragroup of
the subfactor P ⊂ Q is subequivalent to that of N ⊂ M .

Note that the “inclusion” for paragroups is reversed from that for standard λ-
lattices. This implies that for a given standard λ-lattice L, we have only finitely many
standard λ-lattices containing L. This is natural from a viewpoint that enlarging a
standard λ-lattice is difficult, because the flatness condition gives stronger restrictions.

Proof Suppose that N ⊂ M and P ⊂ Q are generated from standard lattices
{A0

00}kl, {A1
kl}kl, respectively. That is, {An

kl}kl for n = 0, 1 are double sequences
of commuting squares arising from a flat connection on (possibly infinite) graphs
with A0

∞,0 = N , A0
∞,1 = M , A1

∞,0 = P , A1
∞,1 = Q, where the meaning of the

suffix ∞ is as before. Then by the finiteness assumption of the inclusion of the
lattices, we can extend these sequences to a triple sequence {An

kl}nkl of string algebras.
Then the flatness of the lattice {A1

kl}kl implies that A0
∞,0 and A1

0,∞ commute. Since
A0

0,∞ ⊂ A1
0,∞ ⊂ A2

0,∞ ⊂ · · · is a Jones tower, we conclude that A0
∞,0 and A∞

0,∞ commute.

We set Ñ = A2
∞,0 and M̃ = A2

∞,1. Then A0
∞,0 ⊂ A2

∞,1 ⊂ A4
∞,2 ⊂ · · · is a Jones

tower, and thus strong amenability of N ⊂ M implies A0′
∞,0 ∩ A2l

∞,l = A2l
0,l, as in the

proof of Proposition 4.3. Then we compare two systems of N -N bimodules arising
from two subfactors N ⊂ M and N ⊂ M̃ . From the above computation of the higher
relative commutants of N ⊂ M̃ , we have a natural identifications between the sets of
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even vertices of the principal graphs of N ⊂ M and N ⊂ M̃ . We can show that this
identification indeeds gives an identification of two systems of bimodules as follows.

We represent a system of N -N bimodules as a system of open string bimodules as
in [1]. (Open string bimodules were originally introduced in [18] and later generalized
in [27]. Here we use a more general form of [1].) In this way, we can realize a system
of N -N bimodules as a system of connections on the principal graph of N ⊂ M . (In
[1], the finiteness of the graph is used for the compactness argument, but we can now
replace it with strong amenability of N ⊂ M as in the proof of Proposition 4.3, so the
possible infiniteness of the graph does not cause a trouble.) Then it is easy to see that
the two systems of the connections are the same. Thus we can identify the two systems
of N -N bimodules and it shows that the subfactor N ⊂ M̃ is realized as a generalized
intermediate subfactor of N ⊂ M . Since we have an inclusion N ⊂ P ⊂ Q ⊂ M̃ of
finite index, we can also conclude that P ⊂ Q is a generalized intermediate subfactor
of N ⊂ M . Q.E.D.
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