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Abstract

We introduce the relative version of the Jones invariant κ as a quadratic
form over the relative Connes invariant χ(M, N ) for a subfactor N ⊂ M and
study its basic properties. Among several properties, we prove that in the
quantum SU(n)k-orbifold constructions for subfactors, the flatness of the re-
sulting connection is equivalent to the triviality of the relative κ of the original
quantum SU(n)k-subfactor.

1 Introduction

Our aim is to introduce the relative version of the Jones invariant κ for a subfactor
N ⊂ M as a quadratic form over the relative Connes invariant χ(M, N) by us in [21]
and study its relation to the orbifold subfactors by us in [19], [7]. In particular, we
prove that in the quantum SU(n)k-orbifold construction for subfactors, the flatness
of the resulting connection is equivalent to the triviality of the relative κ of the
SU(n)k-subfactor.

The subfactor theory initiated by V. F. R. Jones [17] has opened an exciting new
series of interactions between the theory of operator algebras and other fields such
as topology, quantum group theory, conformal field theory, and statistical mechanics.
We here work on an interplay between analytic aspects of the subfactor theory and
rational conformal field theory. A combinatorial machinery we use to study subfactors
is Ocneanu’s paragroups [27]. (See [7]–[10], [19]–[22], [28]–[34] for the paragroup
theory.)

A systematic study of automorphisms of subfactors was initiated by Loi [26]. For
a subfactor N ⊂ M , Loi introduced subfactor versions of two important classes of
automorphisms; approximately inner automorphisms Int(M, N) and centrally trivial
automorphisms Ct(M,N). (His original classification problem of automorphisms of
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subfactors has been solved by S. Popa [40] based on Popa’s deep classification result
[39].) With these two classes, a relative version of the Connes invariant χ(M) in [3]
was introduced by us in [21] as follows.

χ(M, N) =
Ct(M,N) ∩ Int(M, N)

Int(M, N)
,

where Int(M, N) is a class of inner automorphisms implemented by the unitaries of
N .

One of the main results in [21] has revealed a relation between the relative Connes
invariant χ and the orbifold construction for subfactors. Here we briefly recall the
orbifold construction. This is a method to construct a new paragroup from a para-
group with a certain symmetry. That is, we construct a subfactor N × G ⊂ M × G
from a given subfactor N ⊂ M and a certain action of a finite group G on the subfac-
tor N ⊂ M . It was first used by us in [19] in order to realize principal graphs D2n as
well as to show impossibility of principal graphs D2n+1. (This result on the Dynkin
diagrams Dn was announced by Ocneanu [27] first. See the Appendix of [20] for his
original proof, which is quite different.) The orbifold construction for the Dynkin
diagrams A4n−3 gives D2n and that for A4n−1 gives A4n−1 unchanged. This difference
is called an obstruction for flatness in the orbifold construction. (The flatness is one
of the axioms of paragroups.) That is, the obstruction prevent A4n−1 from changing
into D2n+1 while vanishing of this obstruction makes A4n−3 change into D2n. The
orbifold construction has then been established as a general method in [7] and its
relation to rational conformal field theory has been found in [47]. That is, the dif-
ference between the Dynkin diagrams D2n and D2n+1 is clearly understood with the
conformal dimensions of the Wess-Zumino-Witten model SU(2)k. Also see [12], [13],
[48] for more results on the orbifold construction.

In [21] and [9], we have seen that for the quantum SU(n)k subfactors N ⊂ M
arising from the WZW models SU(n)k, the relative Connes invariant χ(M, N) is
equal to Zd with d = (n, k) and that this Zd action is exactly the one we use in the
orbifold construction. In particular, the result for SU(2)k means the following. For
an approximately finite dimensional (AFD) subfactor N ⊂ M with principal graph
An (n > 3), the relative Connes invariant χ(M, N) is Z2 for odd n and 0 for even n.
That is, the relative Connes invariant χ does not see the obstruction for flatness in
the orbifold construction. This is rather unsatisfactory because it is a general belief
that algebraic property (such as flatness) should be equivalent to analytic property of
ultraproducts/central sequences as long as we have a certain amenability condition
such as strong amenability of subfactors. Our aim in this paper is to remove this
insufficiency by introducing the relative Jones invariant κ as a finer invariant than
the relative Connes invariant χ.

We also study a relation between the orbifold construction and the central sub-
factor construction of Ocneanu [27].

The author thanks V. F. R. Jones for his suggestion to study the relative κ in the
setting of the relative χ in [21]. He also thanks D. Bisch, J. Chen, A. Ocneanu, C. E.
Sutherland, and M. Takesaki for helpful communications.
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2 Definition and basic properties

Let N ⊂ M be a subfactor of type II1 with finite index. (Later we work on AFD II1
factors, but we do not need this assumption for a general definition.) We first define
the relative Jones invariant κ as a quadratic form over the relative Connes invariant
χ, which is always an abelian group.

The Jones invariant κ was introduced in [15], [16] in a single factor case. We make
the following definition based on the single factor theory in [2], [15], [16], [42].

Choose α, β ∈ Ct(M,N)∩Int(M, N). By β ∈ Int(M, N), we have unitaries {un}n

in N with β = limn→∞ Ad(un). We look at α · β · α−1. On one hand, this is equal
to Ad(u) · β = limn→∞ Ad(uun) for some unitary u ∈ N because χ(M, N) is abelian,
and on the other hand this is clearly equal to limn→∞ Ad(α(un)). These imply that
the sequence {u∗

nu
∗α(un)}n is central in M . We also know that this sequence is a

Cauchy sequence by the following estimate.

‖u∗
nu∗α(un) − u∗

mu∗α(um)‖2 = ‖umu∗
nu

∗α(unu∗
m) − u∗‖2

→ 0, as n, m → ∞,

because of the central triviality of α. Thus there exists a scalar κ(a, β) with modulus
one such that limn→∞ u∗

nu
∗α(un) = κ(α, β). A standard argument shows that this

number κ(α, β) does not depend on the choice of u and {un}n. A direct computation
using α · β · α−1 = limn→∞ Ad(uun) shows that κ(a, β) = κ(Ad(v) · α, Ad(w) · β) for
unitaries v, w ∈ N , thus κ is a well-defined map from χ(M, N) × χ(M, N) to T, the
set of complex numbers with modulus one.

We also define κ(α) = κ(α, α) for α ∈ χ(M, N). Then we have the following
lemma in the exactly same way as in [2, Proposition 1.7], which means that this κ is
a quadratic form over χ(M, N).

Lemma 2.1 1. For α ∈ χ(M, N), we have κ(α) = κ(α−1).

2. The form bκ(α, β) = κ(αβ)κ(α)κ(β) is symmetric and bilinear.

All the general results in [2] hold in our subfactor settings.
We note that as in single factor cases, we can define κ with ultraproducts as

follows. We fix a free ultrafilter ω over N. Let U be a unitary in Nω implementing
an approximately inner automorphism β. Then we get a(U) = κ(α, β)uU as above.

It is also possible the relative version of the invariant Ω as the obstruction of
the kernel χ(M, N) → Aut(M, N)/Int(M,N), but we omit details because all the
concrete examples below arising from the orbifold construction have trivial Ω.

3 Orbifold subfactors and the relative κ

Let SU(n)k be the Wess-Zumino-Witten model for SU(n) with level k. Then we can
construct a paragroup from it as in [1] and thus we have a corresponding subfactor
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N ⊂ M of the AFD II1 factor. These subfactors are isomorphic to the Wenzl sub-
factors arising from Hecke algebras of type A [45]. Based on [47], it has been shown
in [9, Section 6] that χ(M, N) for this subfactor is Zd, where d = (n, k). In these
cases, the Zd action is realized in a concrete way as in [7] and thus we know that the
relative obstruction Ω is trivial. In particular, in the Definition of κ, we can take the
unitary u to be 1. We will compute κ for these subfactors and identify κ with the
obstruction for flatness in the orbifold construction. We fix n, k with d > 1. Thus
we have a subfactor N ⊂ M . We denote the global index of N ⊂ M by τ̃ , which
is the summation of the normalized Perron-Frobenius weights µ(x)2 for all the even
vertices x of the principal graph. (See [27], [28], [21], [10] for a general theory of the
global index.)

We denote the Zd action on N ⊂ M by α. Xu’s results in [47], [48] are summarized
as follows.

Proposition 3.1 In the Zd-orbifold construction for the quantum SU(n)k subfactor,
the resulting connection is flat if and only if d is odd or 2d divides k.

We have the following lemma.

Lemma 3.2 The global index of the orbifold subfactor N ×α Zd ⊂ M ×α Zd is given
by τ̃ /d if d is odd or 2d divides k and by 2τ̃ /d if d is even and 2d does not divide k.

Proof: The principal graph of the orbifold subfactor is computed from d, k as in
[47], [48]. Then the description of the principal graph in [7, Figure 1.8] gives the
global indices as desired. Q.E.D.

Our next aim is to compute (N×αZd)
ω∩(M ×αZd)

′ and (M ×αZd)
ω∩(M ×αZd)

′

for a fixed free ultrafilter ω over N. We first compute (N ×α Zd)
ω ∩ M ′ and (M ×α

Zd)
ω ∩ M ′. Choose a sequence of unitaries {un}n in N so that α1 = limn→∞ Ad(un).

We denote by U the element in Nω corresponding to the sequence {un}n. We denote
by u the implementing unitary for α1 in the crossed products. A general element in
N ×α Zd is written as

∑d−1
j=0 Xju

j where Xj ∈ Nω. Suppose this element commutes
with M . Then we have Xju

jx = xXju
j for all x ∈ M and j = 0, 1, . . . d− 1. Because

uxu∗ = α1(x) = UxU∗ for x ∈ M , the condition we have is XjU
j ∈ Nω ∩ M ′. So

a general element in (N ×α Zd)
ω ∩ M ′ is expressed as

∑d−1
j=0 Yj(U

∗u)j, where each Yj

is in Nω ∩ M ′. Similarly, we know that a general element in (M ×α Zd)
ω ∩ M ′ is

expressed as
∑d−1

j=0 Zj(U
∗u)j, where each Zj is in Mω ∩ M ′.

Next we compute (N ×α Zd)
ω ∩ (M ×α Zd)

′. Let κ = κ(α1, α1). Then we have
u(U∗u)u∗ = κ̄ and κd = 1. Let l be the minimal positive integer with κl = 1. Note
that the quadratic form κ(·, ·) is trivial if and only if l = 1. Then a general element

in (N ×α Zd)
ω ∩ (M ×α Zd)

′ is expressed as
∑d/l−1

j=0 Yj(U
∗u)jl, where each Yj is in

Nω ∩ M ′.
We need the following lemma.

Lemma 3.3 The action Ad(U∗u) gives an automorphism σ of Nω ∩ M ′ ⊂ Mω and
σj is outer for j = 1, 2, . . . , d − 1 on both factors Nω ∩ M ′ and Mω.
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Proof: The action Ad(u) acts trivially on Nω ∩ M ′ and freely on Mω. Because
UNU∗ = N and UMU∗ = M , it is clear that σ gives an automorphism of Nω ∩M ′ ⊂
Mω.

Suppose that σj is inner on Nω ∩M ′ for some j with 0 < j < d. Then we have a
unitary V ∈ Nω ∩ M ′ with V XV ∗ = U−jXU j for all X ∈ Nω ∩ M ′. Then we have
U jV ∈ (Nω ∩M ′)′∩Nω. By Lemma 3.3 in [18] and the proof of the Central Freedom
Lemma in [21], we get (Nω ∩M ′)′∩Nω. It means we have a unitary v ∈ N such that

Ad(v)(x) = Ad(U jV )(x) = Ad(U j)(x) = αj(x),

for all x ∈ M , which contradicts the freeness of α.
The freeness of σ on Mω is proved similarly. Q.E.D.

By Lemma 3.3, we get

[(N ×α Zd)
ω ∩ (M ×α Zd)

′ : Nω ∩ M ′] =
d

l
.

By [4], the action α acts Mω freely and we get [Mω : Mα
ω ] = d and

[(M ×α Zd)
ω ∩ (M ×α Zd)

′ : Mα
ω ] = d.

By the central triviality of α, we get

Nω ∩ M ′ ⊂ Mα
ω ⊂ (M ×α Zd)

ω ∩ (M ×α Zd)
′,

Nω ∩ M ′ ⊂ (N ×α Zd)
ω ∩ (M ×α Zd)

′ ⊂ (M ×α Zd)
ω ∩ (M ×α Zd)

′.

Because [Mα
ω : Nω ∩ M ′] = τ̃ /d, the identity

[(M ×α Zd)
ω ∩ (M ×α Zd)

′ : Mα
ω ][Mα

ω : Nω ∩ M ′]

= [(M ×α Zd)
ω ∩ (M ×α Zd)

′ : (N ×α Zd)
ω ∩ (M ×α Zd)

′]

×[(N ×α Zd)
ω ∩ (M ×α Zd)

′ : Nω ∩ M ′],

together with Lemma 3.2 and Proposition 3.1 implies that if the resulting connection
in the orbifold construction is flat, then l = 1 and that if the resulting connection in
the orbifold construction is not flat, then l = 2. Thus we have the following theorem.

Theorem 3.4 For the quantum SU(n)k subfactor N ⊂ M , which has χ(M, N) = Zd

with d = (k, n), the relative Jones invariant κ is trivial if and only if the resulting
connection in the Zd-orbifold construction is flat.

For other orbifold subfactors arising from a connected, simply connected, compact
and simple Lie group G as in [47], we have a similar result.
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4 Relation to the quantum double construction

Here we discuss the result in the previous section from the viewpoint of topological
quantum field theory (TQFT) and rational conformal field theory (RCFT).

A. Ocneanu has found that a paragroup gives a Turaev-Viro type TQFT in three
dimensions. (See [30], [32], [8].) He further discovered that the system of M∞-M∞
bimodules of the asymptotic inclusion M ∨ (M ′ ∩M∞) ⊂ M∞ realizes combinatorial
data of RCFT related to this TQFT. (See [31], [32], [33], [34], [10].) He had noticed
that the asymptotic inclusion and the central sequence subfactor as above give es-
sentially same paragroups from a given paragroup. (See [29], [21], and the Appendix
below.) These constructions give the quantum double in the sense of Drinfel′d [6] if
the original paragroup is really a finite group, as noticed by Ocneanu. (See [34], [10],
[5], [24] and the Appendix below.) These altogether mean that the central sequence
subfactor construction is an analytic subfactor analogue of the quantum double con-
struction. Roughly speaking, this is a machinery to produce a higher symmetry from
an original algebraic data. For example, the Yang-Baxter equation is one expression
of such a higher symmetry. (See [31], [34], [10].)

Let N ⊂ M be a subfactor of the AFD II1 factor corresponding to the WZW-
model SU(n)k as above. Let α be the action of Zd used in the orbifold construction,
where d = (k, n). We set P = Nω ∩ M ′ and Q = Mω for a fixed free ultrafilter ω
over N. Then the central sequence subfactor P ⊂ Q has an intermediate subfactor
Qα because of the central triviality of α. (This was a key observation in [21].) From
the above viewpoint related to the quantum double, the subfactor P ⊂ Q should be
a very nice subfactor, and then it is rather unsatisfactory that it has a “classical”
intermediate subfactor Qα ⊂ Q. So it is tempting to look at the subfactor P ⊂ Qα

by removing the “classical symmetry”. This step does not require triviality of the
relative κ. Also note that this new subfactor P ⊂ Qα has the same index value as the
global index of the orbifold subfactor N ×α Zd ⊂ M ×α Zd if and only if the relative
κ is trivial by Lemma 3.2. This suggests that the central sequence subfactor of the
orbifold subfactor might have the same paragroup as P ⊂ Qα, but this is not the
case. To get the correct description of the central sequence subfactor of the orbifold
construction, we need the following lemma.

Lemma 4.1 The action Ad(U∗u) gives an automorphism σ of a factor Qα and σj

is outer for j = 1, 2, . . . , d − 1.

Proof: For X ∈ Qα, we have σ(X) = U∗XU . Because κ = ±1 now, we get
U∗XU ∈ Qα.

Suppose we have σj = Ad(V ) for some unitary V ∈ Qα on Qα for some j =
1, 2, . . . , d − 1. Then we get

U jV ∈ (Qα)′ ∩ Mω = (Mω ∩ (M ×α Zd)
′)′ ∩ Mω = M,

as in the proof of Lemma 3.3. This again gives a contradiction. Q.E.D.
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We now assume that d is odd or 2d divides k, which is the condition for the
flatness in the orbifold construction and the triviality of the relative κ as in Theorem
3.4. Then Lemmas 3.3 and 4.1 imply the following theorem. The assumption on d, k
is necessary to get Qα ×σ Zd.

Theorem 4.2 Under the above assumptions, the central sequence subfactor of the
orbifold subfactor N ×α Zd ⊂ M ×α Zd is given as P ×σ Zd ⊂ Qα ×σ Zd.

The above theorem means that the central sequence subfactor of the simultaneous
crossed product subfactor is given as the simultaneous crossed product subfactor of
the central sequence subfactor with a “classical” intermediate subfactor removed. In
short, the removal of the classical intermediate subfactor corresponding to the cyclic
group Zd appears as the “commutator” of two operations; the simultaneous crossed
product (orbifold construction) and the central sequence subfactor. The flatness
condition that d is odd or 2d divides k is necessary to keep a “higher symmetry” in
this procedure.

In the above viewpoint related to the quantum double, we can say that the orb-
ifold construction removes a redundant classical symmetry of Zd-type from a quantum
subfactor and that the flatness condition is required to keep a high symmetry of the
quantum double type in this procedure. This “removal” is also related to the elimi-
nation of degeneracy of the finite systems of N -N bimodules of the quantum SU(n)k

subfactors in the sense of [34]. For example, the Aodd subfactors have degenerate sys-
tems of bimodules, and the orbifold construction tries to eliminate this degeneracy.
This is successful if and only if the obstruction for flatness vanishes.

5 Appendix

The aim of this Appendix is to include proofs of two theorems obtained by A. Ocneanu
in [29]. These two statements are logically independent of the main body of this
paper, but give clear motivation of this work by showing that a genuine analytic
construction of the central sequence subfactor can be regarded as an analogue of the
quantum double construction of Drinfel′d [6] as in Section 4.

First, we recall the setting of [21]. Let N ⊂ M be an irreducible AFD subfactor
of type II1 with finite index and finite depth. Let ω be a free ultrafilter over N. We
compare the higher relative commutants of the central sequence subfactor Nω∩M ′ ⊂
Mω and the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞. (These two constructions
were introduced in [27]. See [29], [21] for details.)

Our first aim is to give a proof of the following Theorem.

Theorem 5.1 The dual canonical commuting square of the central sequence subfac-
tor Nω ∩ M ′ ⊂ Mω is anti-isomorphic to the canonical commuting square of the
asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞.
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This was claimed in Ocneanu’s Tokyo lectures in 1990 [29] with a brief sketch of
an outline of his proof. This is also one of the two statements left without a complete
proof in [21, Remark 2.16]. (A complete proof of the other statement left in [21,
Remark 2.16] was supplied in [10, Section 3] based on [33].)

In the above statement, the word “dual” means that we make a basic construction
once. This word was missing in [29, page 42] by a fault of the recorder (the author of
this paper) as pointed out in [21, Remark 2.16]. The last statement of this Remark
2.16 in [21] was also slightly incorrect, because the correct form should have an “anti”-
isomorphism, not an isomorphism. In short in the paragroup terminology, we can
say that the central sequence subfactor and the asymptotic inclusion give mutually
dual and opposite paragroups.

It was already proved in [21, Lemma 2.14] that the dual canonical commut-
ing square of the central sequence subfactor is contained in the canonical com-
muting square of the asymptotic inclusion with a trace-preserving injective anti-
homomorphism, so we only have to prove the converse inclusion.

We recall some notations in [21]. We use τ̃ for the index [Mω : Nω ∩ M ′], which
is the global index of the original subfactor N ⊂ M . We choose a generating tunnel

· · · ⊂ M−2 ⊂ M−1 = N ⊂ M0 = M ⊂ M1 ⊂ M2 ⊂ · · ·
and set Ak,l = M ′

k ∩ Ml, Ak,∞ =
∨

l Ak,l = M ′
k ∩ M∞, A−∞,l =

∨
k Ak,l = Ml, and

A−∞,∞ =
∨

k,l Ak,l = M∞. We also set P0 = Nω ∩ M ′, P1 = Mω. We construct the
Jones tower P0 ⊂ P1 ⊂ P2 ⊂ P3 · · · within Mω

∞ as in [21, Lemma 2.13]. We denote the
Jones projection for the subfactor P0 ⊂ P1 by ẽ. For a general subalgebra R of Mω

∞,
we write Rc for R′ ∩Mω

∞. By [21, Lemma 2.13], the sequence · · ·P c
3 ⊂ P c

2 ⊂ P c
1 ⊂ P c

0

is a tunnel.
We have P c

0 =
∨

k Aω
−k,∞ by [21, Lemma 2.9] and P c

1 = M ∨ (M ′ ∩ M∞)ω =
∨

k(A−k,0∨A0,∞)ω by the Central Freedom Lemma, [21, Lemma 2.2]. With the double
commutant theorem in M∞ [27, page 137] (also see [39]) and the Central Freedom
Lemma, we get P cc

1 = P1 and P cc
0 =

⋂
k≥0 Mω

−k = P0. Choose a Jones projection
f ∈ P1, i.e., EP0(f) = τ̃−1. We then need the following lemma.

Lemma 5.2 In the above context, the inclusion P c
1 ⊂ P c

0 ⊂ 〈P c
0 , f〉 is standard.

Proof: First note that EP c
1
(ẽ) = τ̃−1. Because P c

2 ⊂ P c
1 ⊂ P c

0 = 〈P c
1 , ẽ〉 is standard,

a general element of P c
0 is a linear combination of elements of the form xẽy with

x, y ∈ P c
1 . For such x, y, we get

f(xẽy)f = xfẽfy = τ̃−1xfy = fEP c
1
(xẽy).

Thus it is now enough to prove that the central support of f in 〈P c
0 , f〉 is 1. This is

proved as in [21, Lemma 2.7]. Q.E.D.

We set Q1 = 〈P c
0 , f〉. Then P c

1 ⊂ P c
0 ⊂ Q1 and Qc

1 ⊂ P cc
0 ⊂ P cc

1 are both standard.
By [21, Lemma 2.12], we can construct a Jones tower

P c
1 ⊂ P c

0 ⊂ Q1 ⊂ Q2 ⊂ Q3 ⊂ · · · ⊂ Mω
∞
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so that
· · ·Qc

3 ⊂ Qc
2 ⊂ Qc

1 ⊂ P cc
0 ⊂ P cc

1

is a tunnel. We first have

P ′
0 ∩ Pk ⊂ P cc

k ∩ P c
0 = (P c

k )′ ∩ P c
0 .

With the trace preserving anti-isomorphism, we can identify (P c
k)′∩P c

0 with P cc
0 ∩Qk,

which is contained in P0 ∩Qcc
k = (Qc

k)
′ ∩P0, which is again contained in P ′

0 ∩Pk with
the trace-preserving anti-isomorphism. This shows that P ′

0 ∩ Pk = (P c
k )′ ∩ P c

0 . With
this and the results in [21], we get the Theorem as desired.

Our second object is to give a proof of the following theorem, which was also
obtained by Ocneanu in [29].

Theorem 5.3 Let N be an AFD factor of type II1 and M be the crossed product
N × G of N with an outer action of a finite group G. Then the central sequence
subfactor Nω ∩ M ′ ⊂ Mω is of the form Q × G ∈ Q × (G × G), where Q is some
factor of type II1 with an outer action of G ×G and G is embedded into G ×G with
a map g 
→ (g, g).

Because a clear outline of a proof of this Theorem is already in [29], we will just
fill its details for the sake of completeness.

We denote the implementing unitaries in M by λg , the projections in M1 corre-
sponding to the group elements by fg, and the implementing unitaries in M2 by ρg,
where g is an element of G. Note that we have relations λgfhλ

∗
g = fgh, ρgfhρ

∗
g = fhg−1

for g, h ∈ G.
First we claim that Nω ∩ M ′ ⊂ Mω ⊂ 〈Mω, f1〉 is standard. Note that for

x = (xn) ∈ Mω, we get ENω∩M ′(x) = (EN (xn)) because M is the crossed product by
a group action. Thus we have f1xf1 = ENω∩M ′(x)f1 for x ∈ Mω. So it is enough (as
in [21, Lemma 2.7]) to prove that the central support q of f1 in 〈Mω, f1〉 is 1. The
Central Freedom Lemma implies (Mω)′ ∩ Mω

1 = M ∨ (M ′ ∩ M1)
ω = M , so we get

E(Mω)′∩M1
(f1) = Em(f1) = 1/n, where n is the order of the group G. Then we have

1/n = E(Mω)′∩M1
(f1) = E(Mω)′∩M1

(qf1) = q/n, and the claim is proved.
Next, let P = N ′ ∩ Mω

1 . By the Central Freedom Lemma, we get P ′ ∩ P =
(N ∨ (M ′

1 ∩ M ′
1)

ω) ∩ N ′ = C, so P is a factor. We define an action of G × G on P
by Ad(λg · ρh) for (g, h) ∈ G × G and claim that this action is outer. Suppose that
there exists a unitary U ∈ N ′ ∩Mω

1 with AdU = Ad(λg · ρh) for some (g, h) ∈ G×G.
Then λgρhU

∗ ∈ (N ′ ∩ Mω
1 )′ ∩ Mω

2 = N , where we used the Central Freedom Lemma
again. This implies that U is in M2 and hence in N ′ ∩ Mω

1 ∩ M2 = N ′ ∩ M1. By
λgρhU

∗ ∈ N and U ∈ M1, we get ρh ∈ M1 and hence h = 1. By λgU
∗ ∈ N , we get

U ∈ M and then U ∈ N ′ ∩ M1 implies U ∈ C and g = 1, and thus the outerness
claim is proved. We regard G as a subgroup of G × G with the diagonal embedding
as in the Theorem.

It is easy to see that Mω is equal to the fixed point algebra PG×G with this action.
We next claim that PG = 〈Mω, f1〉. The inclusion 〈Mω, f1〉 ⊂ PG is trivial. Because
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[P : PG] = n, it is enough to show [P : 〈Mω, f1〉] ≤ n. By the commuting square
condition, we get [N ′∩Mω

1 : N ′∩Mω] ≤ n, and it is easy to see [N ′∩Mω : M ′∩Mω] ≤
n. Thus we have [N ′ ∩ Mω

1 : M ′ ∩Mω] ≤ n2. Because M ′ ∩Mω ⊂ 〈Mω, f1〉 ⊂ P and
[〈Mω, f1〉 : Mω] = n, we get [P : 〈Mω, f1〉] ≤ n, as desired.

With these, we have proved that the basic construction of the central sequence
subfactor is of the form PG×G ⊂ PG, which proves the Theorem.

With these two theorems, we can conclude that the paragroup of the asymptotic
inclusion of N ⊂ M = N × G is given by NG×G ⊂ NG.

(After this work, the author has learned an argument of M. Izumi with which one
can compute the paragroup of the asymptotic inclusion of N ⊂ M = N ×G directly.)
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