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Abstract. We show that if an automorphism of a factor fixes a subfactor with

finite index globally, then it and its restriction on the subfactor are similar in terms

of innerness, central triviality, approximate pointwise innerness, approximate in-

nerness and pointwise innerness. In particular, an automorphism fixing a subfactor

with finite index globally is free [resp. centrally free] if and only if its restriction on

the subfactor is free [resp. centrally free]. We also show that our method is appli-

cable for removing the irreducibility assumption N ′ ∩M = C in Loi’s classification

of certain free automorphisms of subfactors.

§0 Introduction

Kosaki extended the theory of Jones [J2] on indices of subfactors of factors of

type II1 to general setting for arbitrary factors in [K1] based on Connes’ spatial

theory [C6] and Haagerup’s work on operator-valued weights [Ha2]. Since then,

several results on type III index theory have been obtained in [HK1–2, Hi1–3, K2,

Lo1–2, Ln]. In [Lo1] and [HK1], they showed that if a subfactor is contained in a

factor of type III with finite index, then the two factors are similar in some sense.

Their work is actually study of modular automorphism groups commuting with the
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conditional expectations. From this viewpoint, we generalize their methods to study

automorphisms and group actions commuting with the conditional expectation onto

a subfactor with finite index. Connes’ automorphism approach to studying factors

has been so successful that we try to study subfactors via automorphisms, and this

is our first step.

It has been shown that a factor and its subfactor with finite index are similar in

the sense that the factor has properties like injectivity, fullness, and property T if

and only if its subfactor with finite index has the same property. (See [J2], [PP1],

and [PP2] respectively.) Here we show that the automorphism on the ambient factor

M fixing a subfactor N with finite index globally and its restriction on N are similar

in several senses like innerness, central triviality, approximate pointwise innerness,

and pointwise innerness. In general, if α [resp. α|N ] satisfies some property, then

α|pN [resp. αp] satisfies the same property for some p which is determined by the

index. In particular, a single automorphism fixing a subfactor with finite index

globally is free [resp. centrally free] if and only if its restriction on the subfactor is

free [resp. centrally free].

After the circulation of the first version of this paper as a preprint, the author

received a preprint of Loi [Lo2], in which he showed uniqueness of certain free

automorphisms of an approximately finite dimensional (AFD) factor M of type II1

fixing an subfactor N with finite index globally, assuming that N has finite depth

and N ′ ∩M = C Loi studies these problems for applying them to classification

of subfactors of type IIIλ AFD factors, 0 < λ < 1. Here we have added §3 to

show that our method based on conditional expectations removes the irreducibility
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assumption N ′ ∩M = C in Loi’s results without appealing to Ocneanu’s theorem,

whose proof has not been published.

Section 1 is devoted to general preliminaries on automorphisms commuting with

a conditional expectation. In §2, we apply the results in §1 to study several types

of automorphisms such as inner ones, centrally trivial ones, and so on. We apply

our method to Loi’s theory in §3.

The author is thankful to Prof. F. Hiai and Prof. E. Størmer for sending their

preprints [Hi2–3] and [HS1] respectively, to Prof. H. Kosaki for sending his preprint

[K2] and unpublished work, and to Prof. P. H. Loi for sending his preprints [Lo1–

2] and helpful communications on the first version of this paper and [Lo2]. The

author also thanks the referee for corrections of typographical errors and comments

for improving the exposition.

§1 Preliminaries

In [HK1], Hamachi and Kosaki compared flows of weights for a factor and a

subfactor with finite index by constructing the crossed product algebras by modular

automorphism groups. (See [CT] for background on flows of weights.) We show

that their method can be extended to more general setting where actions commute

with conditional expectations.

In this section, we deal with the following assumption.

Assumption 1.1. Let N ⊂ M be σ-finite von Neumann algebras, E a faithful

normal conditional expectation from M onto N , and αg an action of a separable

locally compact abelian group G on M with the following properties.

(1) αg · E = E · αg.

(2) The map x ∈M+ �→ E(x) − λx is completely positive for some λ > 0.
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Note that condition (1) implies that N is globally invariant under the action αg.

(A necessary and sufficient condition for existence of E with (1) is given in [Hv].)

We denote αg|N simply by αg if no confusion arises. We are interested in mainly

factors, but we do not assume M and N are factors here because we will apply the

results to ultraproduct algebras and crossed product algebras later. If M and N

are factors, then the largest possible λ in (2) is equal to (IndexE)−1, where IndexE

denotes Kosaki’s index of a conditional expectation [K1], by Kosaki’s unpublished

work or [BDH]. (See the arguments preceding Definition 1.7). The commutativity of

G is used only for considering dual actions. Note that if one conditional expectation

from a factor M onto a subfactor N satisfies (2) for some λ > 0, then all the others

also satisfy it for some another λ > 0 by [Hi1]. Before working on the assumptions,

we list easy propositions on the above (1).

Proposition 1.2. Suppose M and N are factors and αg is an action of G on

M which fixes N globally. Condition (1) of Assumption 1.1 holds if one of the

following is valid.

(a) N ′ ∩M = C.

(b) M is of type II and E is the conditional expectation with respect to the trace.

(c) E has the minimal index in the sense of Hiai [Hi1].

Proof. Because α−1
g · E · αg is also a conditional expectation from M onto N for

each g ∈ G, we get the conclusion by uniqueness of the appropriate conditional

expectations ([C1, Théorème 1.5.5], [Hi1, Theorem 1(1)]). (Also see the proof of

[Hi2, Theorem 2.8] as to (c).) Q.E.D.
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If one conditional expectation E : M → N has a finite index for factors M and

N , then there exists the conditional expectation having the minimal index value by

[Hi1], thus Lemma 1.2 (c) shows that Assumption 1.1 (1) is not very restrictive.

Proposition 1.3. Let N ⊂M be σ-finite von Neumann algebras, and E a faithful

normal conditional expectation from M onto N . Take a normal faithful state ϕ on

N and set ψ = ϕ · E ∈ M+
∗ . With G = R and αg = σψt , g = t ∈ R, we get (1) in

Assumption 1.1.

Proof. Immediate by [C1, Lemme 1.4.3], [S, Corollary 10.5]. [T1]. Q.E.D.

Proposition 1.3 shows that our situation is a generalization of [Lo1], [HK1], [K2].

We now fix a normal faithful state ϕ on N and set ψ = ϕ · E ∈M+∗ .

Lemma 1.4. Under Assumption 1.1, there exists a normal faithful conditional

expectation Ê from M �α G onto N �α G with the following properties.

(1) Ê · α̂p = α̂p · Ê, where α̂p denotes the dual action for p ∈ Ĝ.

(2) Ê|M = E.

(3) Ê − λId is completely positive on M �α G.

Proof. Regarding M �α G as a subalgebra of M ⊗̄ L(L2(G)) as usual, we set Ê =

(E ⊗ id|L(L2(G)))|M�αG as in [Hi3, §5]. It is clear that this Ê satisfies (1) and (2),

and Assumption 1.1 (2) implies (3) because Ê is a restriction of E ⊗ id|L(L2(G)).

(In [Hi3], this Ê is called the canonical extension of E.) Q.E.D.

Assume Assumption 1.1 (2). RepresentM in a standard form (M,H ≡ Hϕ·E , J, P )

(see [Ha1], [A]), where ϕ is a fixed normal faithful state on N . We may assume

ϕ · E = ωξ0 , a vector state, with a cyclic and separating vector ξ0 ∈ H. We define
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eN and construct M1 = 〈M,eN 〉 as in [K1, §3]. (Here M and N do not have to

be factors.) Then it is shown that E−1(1) is a bounded element in Z(M) as in

[BDH]. Indeed, by uE−1(1)u∗ = E−1(u1u∗) = E−1(1) for u ∈ U(M ′), we first get

E−1(1) ∈ Ẑ(M)+. The proof of [K1, Lemma 3.1] works even when M and N are

not factors, thus we get E−1(1) ≥ E−1(eN ) = 1. Then applying E−1(J · J) to

the equality in [BDH, Remarques 3.4 (iii)] with [BDH, Corollaire 2.14] and using

E−1(eN ) = 1 and [BDH, Théorème 3.5 b)], we thus get 1 ≤ E−1(1) ≤ λ−1 in

Z(M)+ .

Definition 1.5. Suppose Assumption 1.1 (2) holds.

(1) Define an operator valued weight EM : M1 →M by

EM (x) = (E−1(1))−1JE−1(JxJ)J, x ∈M1.

(2) Choose the implementing unitary ug on H for αg as in [Ha1, Theorem 3.2]

and define an action α̃ of G by α̃g = Ad(ug) for g ∈ G.

Extension of an automorphism α as above is independently studied in [Lo2]. For

type II1 case, this was also mentioned in [W, page 227].

The method of the following proof is essentially same as that of Lemma 1.3 in

[K1].

Lemma 1.6. Suppose E is a faithful normal conditional expectation from a von

Neumann algebra M onto a subalgebra N and α is an automorphism of M fixing
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N globally. Then (α−1 ·E ·α)−1 = α̃−1 ·E−1 · α̃, where α̃ is defined as in Definition

1.5 (2).

Proof. Choose an implementing unitary u on H as in Definition 1.5 (2). For weights

ψ on M and χ on M ′, set ψ̃(x) = ψ(uxu∗), x ∈ M+, χ̃(x) = χ(uxu∗), x ∈ M ′
+,

and Ẽ(x) = u∗E(uxu∗)u, x ∈M . Then by the same kind of argument as the proof

of [K1, Lemma 1.3], we get u
dψ̃

dχ̃
u∗ =

dψ

dχ
. Choosing a faithful state ϕ on N and

applying the same kind of argument as the proof of [K1, Lemma 1.3] again, we get

(E−1)∼ = (Ẽ)−1 as desired. Q.E.D.

The following lemma shows that the new quadruple (M,M1, Ê, α̃) satisfies As-

sumption 1.1 again.

Lemma 1.7. Assume Assumption 1.1. For α̃ in Definition 1.5, we have the fol-

lowing.

(1) EM is a conditional expectation from M1 onto M .

(2) The map x ∈M1 �→ EM (x) − λx is completely positive.

(3) α̃g|M = αg.

(4) α̃g(M1) = M1.

(5) α̃g · EM = EM · α̃g.

(6) α̃g(eN ) = eN .

(7) α̃g(JxJ) = Jα̃g(x)J.
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Proof. (1) If x ∈M , we get

EM (x∗x) = (E−1(1))−1JE−1(Jx∗xJ)J

= (E−1(1))−1J(Jx∗J)E−1(1)(JxJ)J

= (E−1(1))−1x∗JE−1(1)Jx

= x∗x.

(2) It is enough to show EM (x) ≥ λx for x ∈M1. (Use E ⊗ idn instead of E for

general cases.) We may assume that x is of the form y∗y, y = a1eN b1+· · ·+akeN bk,

a1, b1, . . . , ak, bk ∈M . Then λ−1 ≥ E−1(1) ∈ Z(M)+ implies EM (y∗y) ≥ λy∗y.

(3) Trivial.

(4) We get the conclusion by M1 = JN ′J , ugJ = Jug, and αg(N) = N ([K1,

Lemma 3.2], [Ha1, Theorem 3.2], and Assumption 1.1).

(5) By (3), we have the desired equality on M . Thus it is enough to show

α̃g · EM (eN ) = EM · α̃g(eN ).

By Lemma 1.6, we get E−1 = (α−1
g · E · αg)−1 = α̃−1

g · E−1 · α̃g. Thus

EM (α̃g(eN )) = (E−1(1))−1JE−1(Jug(eN )u∗gJ)J

= (E−1(1))−1JE−1(α̃g(eN ))J

= (E−1(1))−1Jα̃g(E−1(eN ))J

= (E−1(1))−1,
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by [K1, Lemma 3.1]. On the other hand, we get α̃g(E−1)(1) = E−1(α̃g(1)) =

E−1(1), hence

α̃g(EM (eN )) = α̃g((E−1(1))−1) = (E−1(1))−1.

These imply the desired equality.

(6) Simply write α and u for αg and ug for a fixed g ∈ G. As in the proof of [K1,

Lemma 3.1], set K = Nξ0 so that eN is the orthogonal projection onto K. Then a

vector η0 ∈ K in the self-dual cone for N exists so that ϕ · α|N = ωη0. By (1) of

Assumption 1.1, we get ϕ · E · α = ωη0 . By [T1, §4], the unitary involutions for M

and N are the same, thus η0 is in the self-dual cone for M . Because eη0 = η0, we get

ϕ ·E ·α = ωη0 , hence the implementing unitary u for α is given by u(xη0) = α(x)ξ0,

x ∈M . (See [A, Theorem 11].) Then

ueNu
∗(xξ0) = ueN(α−1(x)η0)

= ueNα
−1(x)eN η0

= uE(α−1(x))η0

= uα−1(E(x))η0

= E(x)ξ0 = eNxξ0.

(7) Trivial. Q.E.D.

If G = R and αg is given by the modular automorphism group σϕ·E , then we

have two ways of extending this to M1; σ̃ϕ·E on M1 as in Definition 1.5, and the

modular automorphism group of a state ϕ ·E ·EM on M1. Lemma 1.7 (6) and [K1,

Lemma 5.1] show that these two extensions coincide.
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Lemma 1.8. Under Assumption 1.1, the crossed product algebra M1 �α̃ G is the

basic extension of Ê : M �α G→ N �α G and we get α̂∼ = α̃ .̂

Proof. We represent M in a standard form on H, and consider everything in the

Hilbert space H ⊗ L2(G) ∼= L2(G,H). Let J̃ be the modular conjugation for

M �α G and ê be the projection corresponding to Ê. Then it is enough to show

J̃(M1 �α̃ G)J̃ = (N �α G)′ by [K1, Lemma 3.2]. For ξ ∈ L2(G,H), J̃ is given

by (J̃ ξ)(g) = u∗gJξ(g
−1) by [Ha2, Lemma 2.8]. On the other hand, we know that

(N �α G)′ = 〈N ′ ⊗ C, U∗(C ⊗ R(G))U〉 by [Ha2, Theorem 2.1], where R(G) is a

von Neumann algebra generated by the right regular representation of G and the

unitary U on L2(G,H) is given by (Uξ)(g) = ugξ(g). For x ∈ N ′ and g ∈ G, an

easy computation shows

(J̃(x⊗ 1)J̃ξ)(g) = α̃−1
g (JxJ)ξ(g),

J̃U∗(1 ⊗ ρg)UJ̃ = 1 ⊗ λg,

where ρ and λ denote the right and left regular representation of G. Because

M1 = JN ′J by [K1, Lemma 3.2], this shows J̃(N �α G)′J̃ = M1 �α̃ G.

It is easy to see α̂∼ = α̃̂now. Q.E.D.

The following is a generalization of [HK1, Theorem]. With above preliminar-

ies, the same method as in [HK] works, but we include a proof for the sake of

completeness.
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Theorem 1.9. Under Assumption 1.1, let Z(M�αG) ∼= L∞(XM , µM ) and Z(N�α

G) ∼= L∞(XN , µN ). Then there exists a non-singular action T of Ĝ on a measure

space (X,µ) such that the both L∞(XM ) and L∞(XN ) are regarded as subalge-

bras of L∞(X) and there exists a conditional expectation E1 from L∞(X) onto

L∞(XM ) [resp. E2 from L∞(X) onto L∞(XN )], with Pimsner-Popa estimate with

the constant λ, intertwining Tp and α̂p, p ∈ Ĝ.

Proof. By Lemma 1.4 (3) we have the Pimsner-Popa estimate for Ê. The restriction

of this Ê on Z((M �α G) ∩ (N �α G)′) ∼= L∞(X,µ) gives a map from Z((M �α

G) ∩ (N �α G)′) to Z(N �α G), which still satisfies the inequality.

Lemma 1.7 allows us to apply the same arguments for M ⊂ M1. Then Lemma

1.8 implies that (M�αG)∩(N �αG)′ is anti-isomorphic to (M1 �α̃G)∩(M �αG)′

and this anti-isomorphism intertwines α and α̃, hence we get the conclusion.

Q.E.D.

§2 Innerness, central freeness, and so on

In this section, we apply the results in §1 to show that an automorphism on a

factor M fixing a subfactor N with finite index globally is similar to its restriction

on N in terms of innerness, central triviality, approximate pointwise innerness, and

pointwise innerness.

First note that if the action αg is centrally ergodic both on M and N , we get

the following, which generalizes [HK1, Theorem].

Theorem 2.1. Suppose the action αg is centrally ergodic both on M and N in

addition to Assumption 1.1. Set Z(M �α G) ∼= L∞(XM , µM ) and Z(N �α G) ∼=

11



L∞(XN , µN). Then there exists a non-singular action T of Ĝ on a measure space

(X,µ) satisfying the following.

(1) X is isomorphic to XM ×{1, 2, . . . ,m} and XN ×{1, 2, . . . , n} as a measure

space, where m,n are integers with m,n ≤ IndexE.

(2) The projection maps πM and πN from X ∼= XM × {1, 2, . . . ,m} ∼= XN ×

{1, 2, . . . , n} onto XM and XN intertwines T and the actions given by α̂ on

XM and XN .

Proof. Apply the proof of Theorem 1.9. The action T is given by the dual action of α

on Z((M�αG)∩(N�αG)′). Then the disintegration for Z((M�αG)∩(N�αG)′) ⊃

Z(N �α G) implies L∞(X,µ) =
∫ ⊕
XN

A(x)dµN (x), where A(x) is an abelian von

Neumann algebra for each x ∈ XN . (See [T2, Theorem 8.21] for instance.) Let Y

be the subset of x ∈ XN such that A(x) has a partition of unity into c nonzero

mutually orthogonal projections with c > λ−1. Then the Pimsner-Popa inequality

implies µN(Y ) = 0. Hence each A(x) is atomic, and the number of atoms is less

than or equal to IndexE. Lemma 1.4 (1) implies that the number of atoms is

invariant under the ergodic action induced by α̂ on XN . (Because α is centrally

ergodic, the dual action is also centrally ergodic by [JT, Proposition 2.1.13].) Thus

X is isomorphic to XN ×{1, 2, . . . , n} with n ≤ λ−1. We apply the same arguments

for M ⊂M1 again to get the conclusion. Q.E.D.

The next shows the relations of Connes spectra of α and α|N .

Corollary 2.2. Assume α is centrally ergodic both on M and N in Assumption

1.1. Then there exists an integer k such that kΓ(α) ⊂ Γ(α|N ) and kΓ(α|N) ⊂ Γ(α).
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Proof. Set k = [λ−1]!. If p ∈ Γ(α|N ) ⊂ Ĝ, then disintegration in Theorem 2.1

shows that Tkp = id on X, hence kp ∈ Γ(α). We get the converse inclusion, too.

Q.E.D.

Because α̂ on Z(M �αG) is given by the characteristic invariants (see [J1], [JT,

Proposition 2.1.13]), this gives a restriction on a relation of characteristic invariants

of α and α|N . In the simplest case, we get the following, which generalizes [Lo1,

Corollary 2.5.9], a result on T-sets.

Theorem 2.3. Suppose N is a subfactor with finite index of a factor M and α

is an automorphism of M with α(N) = N . Assume α [resp. α|N ] is inner. Set

p = po(α|N ) [resp. p = po(α)], the outer period, and γ = γ(α|N ) [resp. γ = γ(α)],

the obstruction. (See [C3] for definitions.) Define q to be the least positive integer

such that γq = 1, q ≤ p. Then p > 0 and pq ≤ IndexE.

Proof. Choose a conditional expectation E : M → N with the minimal index and

apply Theorem 2.1 with λ = (IndexE)−1. The center of N �α Z [resp. M �α Z]

is generated by (uU−p)q , where Ad(u) = αp|N [resp. Ad(u) = αp], and U is the

implementing unitary in the crossed product algebra. Because of compactness of

T = Ẑ, the action T of T in Theorem 2.1 is (translation) × id on T × {1, . . . ,m}.

By the n-to-1 projection πN , we get a translation of T with speed pq on T, thus

we get mpq = n [resp. npq = m]. Then we get the conclusion. Q.E.D.

Corollary 2.4. Suppose N is a subfactor with finite index of a factor M and α is

an automorphism of M with α(N) = N . Then α is free if and only if α|N is so.

Proof. Immediate by Theorem 2.3. Q.E.D.
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Loi independently obtained this corollary in [Lo2, Corollary 5.2] by a different

method.

Next we work on centrally trivial automorphisms. Several properties of centrally

trivial automorphisms were studied in [C3, KST, O, ST], and it has been known

that this class of automorphisms is important for classification of group actions.

(For the ultraproduct algebras, see [C2] or [O, Chapter 5].)

Definition 2.5. Let M and N be σ-finite von Neumann algebras, E a faithful

normal conditional expectation from M onto N , and ω a free ultrafilter on N.

Define Mω,N to be the quotient of all the bounded sequences (xn) in M such that

‖[xn, ϕ · E]‖ → 0, n → ω, for all ϕ ∈ N∗, by the two sided ideal of sequences

converging ∗-strongly to 0 when n→ ω.

Lemma 2.6. The C∗-algebra Mω,N in Definition 2.5 is a finite von Neumann

algebra.

Proof. The same proof as [C2, Theorem 2.9] works. Q.E.D.

Theorem 2.7. Suppose N is a subfactor with finite index of a factor M and α is an

automorphism of M with α(N) = N . If α [resp. α|N ] is centrally trivial, then there

exists a positive integer p ≤ IndexE with αp|N ∈ Cnt(N) [resp. αp ∈ Cnt(M)].

Proof. Choose a conditional expectation E : M → N with the minimal index again.

First assume α|N ∈ Cnt(N).

Note that α acts on Mω,N . We denote αω for this action. Then Mω and Nω

are subalgebras of Mω,N and αω(Mω) = Mω and αω(Nω) = Nω. Applying E term

by term, we get a normal faithful conditional expectation Eω from Mω,N onto Nω
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with the Pimsner-Popa estimate with constant λ = (IndexE)−1. Thus Assumption

1.1 is satisfied for this Eω. (cf. Proposition 1.11 of [PP1].)

We claim next that there exist a positive integer p ≤ IndexE and a non-zero a ∈

Mω,N such that (αω)p(x)a = ax for all x ∈Mω,N . Suppose not. Then the center of

the crossed product algebra Mω,N �αω Z is contained in {∑k=0,|k|>IndexE akU
k |

ak ∈Mω,N}, where U is the implementing unitary of the crossed product Mω,N �αω

Z. Thus there exists no non-zero a in this center such that α̂ωp(a) = pka, p ∈

T ⊂ C, for any 0 < k ≤ IndexE. On the other hand, the dual action of T on

Z(Nω �αω Z) ∼= Z(Nω) ⊗ L∞(T) is given by id × (translation). By compactness

of T, we know that the space X and the action T in Theorem 1.9 are of the form

X ∼= Y ×T, T = id× (translation). Decomposing XM into speed l components for

each l ∈ Z, we get a contradiction to the property of πM .

The same proof as in [C3, Proposition 2.1.2] shows that (αω)p is trivial on Mω

now. (It does not matter that a is not in Mω here.)

On the other hand, assume α is centrally trivial on M . Then by Lemma 1.7

and the above proof, there exists a positive integer p ≤ IndexE such that α̃p is

centrally trivial on M1.

Note that α|N is conjugate to α̃eN by Lemma 1.7 (6). If N is of type II1, then

M1 is also of type II1, and [C4, Proposition 4.2, Theorem 4.3] imply that αp|N is

centrally trivial. If N is of type II∞, then M1 is also of type II∞ and trM1(eN ) = ∞,

hence eN is equivalent to 1 in M1. If N is of type III, then eN is equivalent to 1 in

M1 again. In the both cases, choose a partial isometry v ∈M1 with vv∗ = eN and

v∗v = 1. Then Ad(v∗α̃(v)) · α̃ is conjugate to α̃eN , hence to α|N . This implies that

αp|N is centrally trivial. Q.E.D.
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Corollary 2.8. Suppose N is a subfactor with finite index of a factor M and α is

an automorphism of M with α(N) = N . Then α is centrally free if and only if α|N

is centrally free.

Proof. Immediate by Theorem 2.7. Q.E.D.

Connes and Takesaki introduced a continuous homomorphism “module” from

Aut(M) to Aut(F(M)) in [CT]. (Here M denotes a infinite separable factor and

F(M) its flow of weights.) For AFD factors, the module is important as a tool

for distinguishing approximately inner automorphisms. We show that this mod is

compatible with the common finite extension of flows of weights of [HK1].

Theorem 2.9. Suppose N is a subfactor with finite index of a separable factor M

of type III and α is an action of the discrete abelian group G on M with αg(N) = N

for all g. Set Z(M �σ R) ∼= L∞(XM , µM ) and Z(N �σ R) ∼= L∞(XN , µN ), where

σ denotes the modular automorphism groups σψ·E for a weight ψ on N . Then there

exists a non-singular action T of G × R on a measure space (X,µ) satisfying the

following.

(1) X is isomorphic to XM ×{1, 2, . . . ,m} and XN ×{1, 2, . . . , n} as a measure

space, where m,n are integers with m,n ≤ IndexE.

(2) The projection maps πM and πN from X ∼= XM × {1, 2, . . . ,m} ∼= XN ×

{1, 2, . . . , n} onto XM and XN intertwines T and the actions given by the

product of mod(α) and the flow of weights on XM and XN .

First, we show a lemma.
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Lemma 2.10. Assume the assumption of Theorem 2.9. Without loss of gener-

ality, we may assume that there is a dominant weight ψ on N with the following

properties:

(1) The weight ψ is invariant under α|N .

(2) The weight ψ · E is dominant on M and invariant under α.

(3) The action α extends to a pair M̃ ≡ M �σψ·E R ⊃ Ñ ≡ N �σψ R so that

the extended action satisfies Assumption 1.1 with Ê of Lemma 1.4.

Proof. Choose a conditional expectation E : M → N with the minimal index

again. By Lemma 1.4, we may replace α, E, M , and N by ˆ̂α, ˆ̂
E, M ⊗̄ L(L2(G)),

and N ⊗̄ L(L2(G)), respectively. Then apply [ST, Lemma 5.10] to get a dominant

weight ψ on N which is invariant under the (new perturbed) action α|N . (The

cocycle to perturb α is chosen within N , hence the perturbed action still satisfies

Assumption 1.1 (1).) Then ψ ∼ λψ for all λ > 0 implies ψ · E ∼ λψ · E on M ,

hence ψ · E is also dominant. (See [CT, Theorem II.1.1, Definition II.1.2].) The

action α now extends to the crossed product by R as in [HS1, Lemma 13.2]. It is

easy to see that this satisfies (3). Q.E.D.

Proof of Theorem 2.9. We may assume (1), (2), and (3) of Lemma 2.10. The action

α extends to M1 as in Lemma 1.7 and then it extends to the crossed product M̃1

by the modular automorphism group as in [HS1, Lemma 13.2]. On the other hand,

α extends as in (3) of Lemma 2.10 and it extends to M̃1 (see Lemma 1.8) as in

Lemma 1.7. It is easy to see that these two extensions coincide. Then we can apply

the argument of [HK1] (or Theorem 2.1 here) to get the conclusion. Q.E.D.
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Haagerup and Størmer showed that mod(α) is trivial if and only if α is approxi-

mately pointwise inner in [HS1, Corollary 13.5]. (See [HS1, Definition 12.3] for the

definition.) Thus we get the following corollary.

Corollary 2.11. Suppose N is a subfactor with finite index of a separable factor M

of type III and α is an action of the discrete abelian group G on M with αg(N) = N

for all g. Define

P (α) = {g ∈ G | αg is approximately pointwise inner.}.

Then there exists an integer k such that kP (α) ⊂ P (α|N ) and kP (α|N ) ⊂ P (α).

Proof. Apply the same argument as the proof of Corollary 2.2. Q.E.D.

For AFD factors, the module is trivial if and only if the automorphism is ap-

proximately inner as announced in [C5, section 3.8]. (See [KST, Theorem 1 (i)] for

the proof.) Thus we get the following corollary immediately.

Corollary 2.12. Suppose N is an AFD subfactor with finite index of a separable

factor M of type III and α is an action of the discrete abelian group G on M with

αg(N) = N for all g. Define A(α) = {g ∈ G | αg is approximately inner.}. Then

there exists an integer k such that kA(α) ⊂ A(α|N ) and kA(α|N) ⊂ A(α).

Haagerup and Stømer also introduced the notion of pointwise inner automor-

phisms in [HS1, Definition 12.3] and studied them in [HS2]. In particular, they

showed that an automorphism α of a separable factor M of type IIIλ, 0 ≤ λ < 1, is

pointwise inner if and only if its canonical extension α̃ to M �σ R is inner ([HS2,

Theorem 5.2]) and that an automorphism α of a separable factor of type III is an
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extended modular automorphism up to inner perturbation if and only if α̃ is in-

ner ([HS2, Proposition 5.4]). On the other hand, the flow of weights of the crossed

product of a factor M of type III by an action α of a discrete group G is determined

by the flow of weights of M ,

H = {g ∈M | αg is an extended modular automorphism up to inner perturbation.},

and the restriction of α on H. (See [Se, Theorem] and [KT, Theorem 3.3]. In [KT],

injectivity of the factor is assumed, but it is unnecessary.) This shows importance

of this type of automorphisms. Note that for an automorphism of AFD factors, it

is an extended modular automorphism up to inner perturbation if and only if it is

centrally trivial as announced in [C5, section 3.8] (see [KST, Theorem 1 (ii)] for the

proof). Now we get the following theorem for this type of automorphisms.

Theorem 2.13. Suppose N is a subfactor with finite index of a separable factor M

of type III and α is an action of the discrete abelian group G on M with αg(N) = N

for all g. Define

D(α) = {g ∈ G | αg is an extended modular automorphism up to inner perturbation.}.

Then there exists an integer k such that kD(α) ⊂ D(α|N ) and kD(α|N ) ⊂ D(α).

Proof. Extend α to M̃ and Ñ as in Lemma 2.10. Now we can apply Theorem

1.9 as in the proof of Theorem 2.7. By [KT, Lemma 3.2] and [HS2, Proposition

5.4], we conclude that if αg|N is an extended modular automorphism up to inner

perturbation, then so is αpg on M for some p ≤ IndexE. The conclusion now easily

follows. Q.E.D.
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Remark 2.14. It follows from Theorem 2.13 that for an automorphism α of a

separable factor M of type III fixing a subfactor N with finite index globally,

none of its nontrivial power is an extended modular automorphism up to inner

perturbation if and only if we have the same property for α|N . An approach based

on [Se] or [KT, Theorem 3.1, Theorem 4.1] can also be used for this. For example,

suppose M is of type III1 and none of non-trivial powers of α are extended modular

automorphisms up to inner perturbation. Then α is free on M , hence free on N

by Corollary 2.4. Now M �α Z and N �α Z are both factors and the index of the

pair is finite. By [Se, Theorem], M �αZ is of type III1, hence Loi’s result [Lo1] (or

Corollary 2.2 here) implies that N �α Z is also of type III1. If αp|N = Ad(u) · σt

for some p > 0, then the flow of weights of N �α Z is given by L∞(T)S for some

rational rotation S as in the proof of [KT, Theorem 4.1], hence N �α Z is of type

IIIλ for some λ ∈]0, 1[, which is a contradiction.

Remark 2.15. For AFD factors, an automorphism is centrally trivial if and only

if it is an extended modular automorphism up to inner perturbation. ([C5, section

3.8], [KST, Theorem 1 (ii)].) Of course, above Theorem 2.13 is compatible with

Theorem 2.7 for this case.

By [HS2, Theorem 5.2], we get the following corollary immediately.

Corollary 2.16. Suppose N is a subfactor with finite index of a separable factor

M of type IIIλ, 0 ≤ λ < 1, and α is an action of the discrete abelian group G on M

with αg(N) = N for all g. Define I(α) = {g ∈ G | αg is pointwise inner.}. Then

there exists an integer k such that kI(α) ⊂ I(α|N) and kI(α|N ) ⊂ I(α).

§3 Application to Loi’s classification of automorphisms of subfactors
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This section consists of remarks on Loi’s paper [Lo2] to the effect that the irre-

ducibility assumption N ′ ∩M = C in his results can be removed.

Basic observation in [Lo2] is that Connes’ method in [C3] to show uniqueness of

a centrally free and approximately inner automorphism of a McDuff factor works

in the subfactor setting where M ⊗̄ R ∼= M , Int(M), Aut(M) and M ′ ∩Mω are

replaced by (N ⊂M) ∼= (N ⊗̄ R ⊂M ⊗̄ R), Int(M,N), Aut(M,N), and M ′ ∩Nω

respectively. (Here Aut(M,N) = {α ∈ Aut(M) | α(N) = N} and Int(M,N) is a

closure of {Ad(u) | u ∈ U(N)} in Aut(M,N), and R denotes the AFD type II1

factor.)

In [Lo2, Proposition 4.4], Loi proved the following proposition under an addi-

tional condition N ′∩M = C for applying Connes’ non-commutative Rohlin method

in [C3] to M ′ ∩Nω. This is used in [Lo2, Proposition 6.1] to show splitting of the

AFD factor of type IIIλ. (See Proposition 3.7 below.) The readers is referred to

[O2] or [P] for definitions of finite depth, tunnel, and other related notions.

Proposition 3.1. Let N ⊂M be AFD factors of type II1 of finite index and finite

depth, and α ∈ Aut(M,N). If α is free on M , then the restriction of αω onto

M ′ ∩Nω is also free.

For the proof, Loi uses a theorem of Ocneanu announced in [O2, page 137,

Theorem b)], whose proof has not yet been published, to the effect that M ′ ∩Nω

is a subfactor of Mω with finite index. (Ocneanu recently announced more detailed

study of the inclusion M ′ ∩ Nω ⊂ Mω.) Here we give a more direct proof to the

above proposition based on our results and Popa’s approach [P] without assuming

N ′ ∩M = C.
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Assume N ⊂M be AFD factors of type II1 with finite index. We choose and fix a

tunnel · · ·N2 ⊂ N1 ⊂ N = N0 ⊂M = N−1 and Jones projections {e−j}j=0,1,2··· ⊂

M such that e−j ∈ Nj−1 and Nj ∩ {e−j}′ = Nj+1. Then we get the following

lemma first.

Lemma 3.2. Fix a free ultrafilter ω on N. Then · · ·Nω
2 ⊂ Nω

1 ⊂ Nω ⊂ Mω is

a tunnel for the ultraproduct II1 factor Mω and Jones projections {e−j}j=0,1,2··· ⊂

Mω satisfy Nω
j ∩ {e−j}′ = Nω

j+1.

Proof. We prove this by induction on j. By [PP1, Proposition 1.10], we get

ENω
j+1

(e−j−1) = [M : N ]−1 = [Nω
j : Nω

j+1]
−1.

Thus if we set P = Nω
j+1 ∩ {e−j−1}′, then this is a II1 subfactor of Nω

j+1 with the

index equal to [M : N ] by [PP1, Corollary 1.8]. Now Nω
j+2 is included in P and

have the same index in Nω
j+1 as P . This means Nω

j+2 = P = Nω
j+1 ∩ {e−j−1}′.

Q.E.D.

The following corresponds to (a part of) [O2, page 137, Theorem d)].

Lemma 3.3. Let N be a subfactor of an AFD II1 factor M with finite index and the

generating property in the sense [P] that there exists a tunnel with
∨
j(N

′
j∩M) = M .

We fix such a tunnel. Then M ′ ∩Nω = {e0, e−1, e−2, . . . }′ ∩Nω in Mω.

Proof. Because Jones projections are in M , it is trivial that we get

M ′ ∩Nω ⊂ {e0, e−1, e−2, . . . }′ ∩Nω.
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Choose an x ∈ {e0, e−1, e−2, . . . }′ ∩ Nω, and y ∈ N ′
j ∩ M for some j. Then

x ∈ Nω ∩ {e0, · · · , e−j+1}′ = Nω
j by Lemma 3.2. This implies xy = yx. By

∨
j(N

′
j ∩M) = M , we get x ∈M ′. Q.E.D.

We consider the conditional expectation EM ′∩Nω on Mω with respect to the

trace in the above situation and denote its restriction on Mω just by E. For this

E, Popa’s method gives a Pimsner-Popa estimate as follows.

Lemma 3.4. Let N be a subfactor of an AFD II1 factor M with finite index and

finite depth. We fix an arbitrary tunnel {Nk}. There exists a positive constant c

such that for any positive element x in Nk ∨ Z(N ′
k ∩M), we get ENk(x) ≥ cx.

Proof. Let nnn(j) = (n(j)
k ) and ppp(j) = (p(j)k ) be the vectors denoting the size and the

trace of the minimal projection in each irreducible component of N ′
j ∩M respec-

tively.

By [P, Theorem 3.8], there exists j0 such that p(2j+1)
k = [M : N ]j0−jp(2j0+1)

k

for j ≥ j0. Because nnn(j) · ppp(j) = 1, the vector [M : N ]j0−jnnn(2j+1) approaches to

a Perron-Frobenius eigenvector of AAt as j → ∞, where A denotes the inclusion

matrix as in [P, Corollary 2.3].

For p(2j)
k , we have a similar result. Then we set c = infj,k n

(j)
k p

(j)
k , which is

positive. Q.E.D.

Lemma 3.5. Let N be a subfactor of an AFD II1 factor M with finite index and

finite depth. We fix an arbitrary tunnel {Nk}. Then there is a positive constant c

such that E − cId is completely positive on Mω.

Proof. Without loss of generality, we may assume the tunnel (Nj)j has the gener-

ating property. (Such a tunnel can be chosen by [P, Theorem 4.9].)

23



First note that (E ⊗ idn)(x) = limj→∞ ENω
j ⊗Mn(C)(x) for x ∈ Mω ⊗Mn(C)

by Lemmas 3.2 and 3.3. (Here all the conditional expectations are in Mω with

respect to the trace. This equality with n = 1 proves the formula in [O2, page 137,

Theorem d)] without the assumption N ′ ∩M = C.)

Fix j, n. Then there exists a positive constant c such that E(Nj∨(N ′
j∩M))ω⊗Mn(C)(x) ≥

cx for all x ∈ (Mω⊗Mn(C))+ by [P, Theorem 4.3], because (Nj⊗Mn(C))j is a tun-

nel in M ⊗Mn(C). Because x ∈Mω ⊗Mn(C), we get E(Nj∨(N ′
j∩M))ω⊗Mn(C)(x) =

E(Nj∨Z(N ′
j∩M))ω⊗Mn(C)(x). Then we get

ENω
j ⊗Mn(C)(x) = ENω

j ⊗Mn(C)(E(Nj∨Z(N ′
j∩M))ω⊗Mn(C)(x)) ≥ cc′x,

where c′ is given by Lemma 3.4 applied to the tunnel (Nj⊗Mn(C))j in M⊗Mn(C).

This proves the conclusion. Q.E.D.

Now we can prove the Proposition.

Proof of Proposition 3.1. Because α ∈ Aut(M,N), we know that αω acts on both

Mω and M ′∩Nω. The conditional expectation E : Mω →M ′∩Nω commutes with

αω because the trace is αω-invariant, thus Assumption 1.1 is satisfied by Lemma

3.5. Suppose there exists k > 0 such that αkω is not properly outer on M ′ ∩ Nω.

Then [Lo2, Proposition 4.2] implies that αkω is trivial on M ′ ∩Nω , hence

(M ′ ∩Nω) �αkω
Z ∼= (M ′ ∩Nω) ⊗̄ L∞(T).

On the other hand, we know that αω onMω is free by [C3], thus Theorem 1.9 implies

that the dual action on Z((M ′ ∩ Nω) �αkω
Z) is trivial, which is a contradiction.

(Also see the proof of Theorem 2.7.) Q.E.D.
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Assume N is a subfactor of a II1 factor M with finite index and fix a tun-

nel {Nj}j≥0. To apply Connes’ method in [C3], one needs a characterization of

Int(M,N). For this purpose, Loi defined a homomorphism Φ from Aut(M,N) to

the group G of a system of automorphisms {αk}k≥0 with

(1) each αk is a trace preserving automorphism of N ′
k ∩M ;

(2) αk preserves the inclusion N ′
j ∩N ⊂ N ′

j ∩M for 0 ≤ j ≤ k;

(3) αk extends αk−1;

(4) αk(e−j) = e−j for 0 ≤ j ≤ k − 1,

by fixing ej ’s successively by inner perturbation in [Lo2, §5]. He showed the con-

tinuity of Φ under the assumption of N ′ ∩ M = C in [Lo2, Proposition 5.3] to

get an exact sequence characterizing Int(M,N). (See Proposition 3.8 below.) The

topology of G here is given by convergence for each k. We show this continuity

without assuming N ′ ∩M = C as follows. Note that this Φ reminds us the module

of Connes-Takesaki for automorphisms of type III factors [CT, page 554]. (See

also [Lo2, Theorem 5.4] for similarity between the two.) The following proof is an

analogue of the proof of Connes-Takesaki for continuity of mod.

Proposition 3.6. The above Φ : Aut(M,N) → G is continuous if [M : N ] < +∞.

Proof. The map u ∈ U(N) → ue0u
∗ is a continuous surjection onto

{p ∈ Proj(M) | EN (p) = [M : N ]−1}

by [PP1, Proposition 1.2] Because the both spaces are Polish, we get a Borel cross

section Ψ such that Ψ(p) ∈ U(N) and Ψ(p)e0Ψ(p)∗ = p by von Neumann measur-

able cross section Theorem, [T2, Theorem A.16]. Then α1 is given by the restriction
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of Ad(Ψ(α(e0))∗) ·α on the relative commutant N ′
1 ∩M . Because both Aut(M,N)

and the group of α1 are Polish groups, the map α �→ α1 is continuous. (See [C2,

Lemma 3.4] for example.) This method works for any k. Q.E.D.

The assumption N ′ ∩M = C is used only in [Lo2, Propositions 4.4, 5.3]. Thus

we get the following generalization immediately.

By our Proposition 3.1 instead of [Lo2, Proposition 4.4], we get the following,

which generalizes [Lo2, Proposition 6.1], with the same proof.

Proposition 3.7. Let N ⊂M be an inclusion of AFD IIIλ factors of finite index

and finite depth with common discrete decompositions. If the tower of the higher

relative commutants of N ⊂ M is equal to that of the corresponding type II1 in-

clusion, then there exist AFD factors B ⊂ A of type II1 such that N ⊂ M is

isomorphic to B ⊗̄Rλ ⊂ A ⊗̄Rλ.

By Proposition 3.6 instead of [Lo2, Proposition 5.3], we get the following.

Proposition 3.8. Let N ⊂ M be an inclusion of AFD II1 factors of finite index

and finite depth. The following sequence is split exact.

1 → Int(M,N) → Aut(M,N) Φ→G → 1.

This shows that a free automorphism in Ker(Φ) is unique up to outer conjugacy

without assuming N ′ ∩M = C.
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Sup. 6 (1973), 133–252.

[C2] A. Connes, Almost periodic states and factors of type III1, J. Funct. Anal. 16

(1974), 415–445.

[C3] A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci.
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