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Abstract. We apply the notion of orbifold models of SU(N) solvable lattice

models to the Hecke algebra subfactors of Wenzl and get a new series of subfactors.

In order to distinguish our subfactors from those of Wenzl, we compute the principal

graphs for both series of subfactors. An obstruction for flatness of connections arises

in this orbifold procedure in the case N = 2 and this eliminates the possibility of

the Dynkin diagrams D2n+1, but we show that no such obstructions arise in the

case N = 3. Our tools are the paragroups of Ocneanu and solutions of Jimbo-

Miwa-Okado to the Yang-Baxter equation.

§0 Introduction

A connection between solvable lattice models in statistical mechanics and sub-

factors in the theory von Neumann algebras was soon realized after the pioneering

work of Jones [Jo] on subfactors, see for example [EL]. Subsequently the theory of

subfactors has had striking relations with knot theory, conformal field theory, quan-

tum groups and so on (c.f. [Ji], [Kn], [YG]). Recently the idea of an orbifold of a

*Miller Research Fellow
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solvable lattice model has been studied by [DZ, FG, Ko], borrowing from the notion

of an orbifold model in conformal field theory of [DHVW], who considered string

propagation on toroidal orbifolds. In this paper we study the relation of subfactors

to solvable lattice models, and apply the idea of orbifold lattice models to the sub-

factors of Wenzl [We] to get a new series of irreducible subfactors with the same

index as the subfactors of Wenzl. Recall that his subfactors arise from representa-

tions of the Hecke algebra of type A and correspond to work of Jimbo-Miwa-Okado

[JMO1, JMO2] in solvable lattice model theory, and also to the quantum groups

Uq(slk) and the 2-variable polynomial link invariant of [FYHLMO].

The notion of orbifold models has also arisen recently in the structure theory of

C∗-algebras. Here striking new phenomenon has been discovered in the theory of

C∗-algebras which are approximately finite dimensional and more generally in the

larger class of C*-algebras of real rank zero — which is probably a more accurate

non commutative analogue of a totally disconnected or zero dimensional space. For

example, AF algebras have been constructed in a non standard way as an inductive

limit of homogeneous or subhomogeneous algebras on the circle (with careful choice

of embeddings with the circle being wound around itself). The flip on the circle

induces a symmetry on the algebra whose fixed point algebra is not AF (see [Bl],

[Ku] and [BEEK1–3] for generalisations to other groups). Similarly the flip on the

interval has been exploited by [Ell] to construct a symmetry on an AF algebra whose

fixed point algebra is not even of real rank zero. The flip on the non commutative

2-torus Aθ [BEEK1–3] gives an AF fixed point algebra (a non commutative toroidal

orbifold — a non commutative sphere with four singularities) [BK] see also [EE].

Taking the dual action one again gets a symmetry on the AF algebra Aθ ×Z2 with
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fixed point algebra the non AF irrational rotation algebra Aθ. The message from

this theory is that one can get something new and different from what one started

with by considering the action of finite group on a system where there is a fixed

point in the underlying basic structure. It is this same philosophy which we follow

here to construct new subfactors.

The classification of subfactors of the approximately finite dimensional (AFD)

factors is one of the most important and exciting problems in theory of operator

algebras. The tower of higher relative commutants has been a useful invariant

for this problem. In particular, the Bratteli diagram of this tower is generated by

iterating a graph (called the principal graph) beginning with some initial vertex. A.

Ocneanu introduced a new notion paragroup as a combinatorial characterization of

higher relative commutants in subfactor theory in [O1]. He announced in [O1] that

a subfactor with finite index, trivial relative commutant, and “finite depth” can

be generated by the tower of relative commutants, and thus they are classified by

paragroups. Though his proof has not been presented yet, S. Popa gave a proof for

this in [P3] without assuming the trivial relative commutant condition, and further

announced necessary and sufficient conditions for such a generating property in

[P4]. Thus a large class of subfactors of the AFD factor of type II1 can be classified

by the paragroup approach.

A paragroup is a graph with a certain complex-valued function defined on squares

arising from four edges of the graph. It can be regarded as a certain quantization

of the Galois group. That is, instead of fields and subfields, we study factors and

subfactors, which are non-commutative infinite dimensional ∗-algebras, and a graph
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is regarded as a generalization of the underlying set of a group. Group operations

and duality are transformed into operations on the functions on squares.

Moreover, the study of paragroups can be regarded as differential geometry on

finite graphs. Finite graphs are regarded as discrete models of compact manifolds,

and the distinguished function on squares is an analogue of a connection. We call

this function a connection, too. The key notion in the theory of Ocneanu is the

analogue of flatness of connections.

Another aspect of paragroup theory is its connection with solvable lattice model

theory like [ABF] (without a spectral parameter), and this is what we exploit in

this paper. (See [DJMO, Ba] for solvable lattice model theory, for instance.) We

have the following correspondences between these two theories.

Paragroups Lattice models
Connections Boltzmann weights
Unitarity First inversion relations
Commuting square conditions Second inversion relations
Commuting square conditions
for towers of relative commutants Crossing symmetry
Flatness of connections Yang-Baxter equation plus something

Table 0.1

More details on these correspondences are discussed in this paper. Note that the

commuting square is a key notion in the approach of Jones to subfactors [P1], [GHJ,

§4.2]. We refer to [O1, O2, O3] for details of the theory of Ocneanu.
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With his paragroup, A. Ocneanu announced classification of subfactors with

index less that 4 in [O1]. In this case, the trivial relative commutant condition

and the finite depth condition are satisfied automatically, so it is enough to classify

paragroups with “order” less than 4. (The Jones index of a paragroup is an analogue

of the order of a finite group.) In this case, the graphs we have (the “principal”

graph as in [GHJ]) are among the Dynkin diagrams An,Dn, E6, E7, E8.

The second author used the orbifold method in [Ka] to study subfactors with the

principal graph Dn, the Dynkin diagrams, as “orbifolds” of subfactors of type An

by Jones [Jo]. An idea of “orbifold” is that if a paragroup has a certain symmetry,

we can take its quotient by the symmetry. This idea was used in solvable lattice

model theory by [FG, Ko], but the subfactor situation is more subtle as flatness is

quite a strong requirement.

The Dynkin diagram Dn can be regarded as an orbifold of A2n−3 by a Z2-

symmetry. It is natural to apply the orbifold method also to Wenzl’s subfactors,

because Wenzl’s subfactors are related to SU(N) lattice models and the construc-

tion of Jones corresponds to the case N = 2. Amongst the Dynkin diagrams, only

the even D2n appear as paragroups; the odd D2n+1 cannot appear as was announced

in [O1] and proved in [Ka]. (Izumi gave a different proof of impossibility of D2n+1

independently in [I] based on Longo’s sector theory [Ln1, Ln2], and its bimodule

version was given by Evans-Gould in [EG2] and by Sunder-Vijayarajan in [SV] in-

dependently. This approach was also claimed by Ocneanu without a proof.) This

fact is interpreted in our orbifold setting as a Z/2Z-obstruction for flatness. In this

paper, we show that in the case N = 3, such an obstruction does not occur. The
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reason for this vanishing comes from the fact that 3 is odd while 2 is even. (Indeed,

our method can be extended to all the odd prime N with a slight modification.)

Our subfactors have the same index as those of Wenzl because the orbifold con-

struction always gives the same Jones index as the original subfactor. We compute

the principal graphs for both subfactors in order to distinguish them. For this pur-

pose, we make use of the Yang-Baxter equation, or the star-triangle relation — the

relation between flatness of connections and the Yang-Baxter equation is brought

out in our discussion. Our approach also computes the paragroups of the subfactors

of Wenzl, which he could not obtain. (He computed only the principal graphs with

R-matrix version of the Yang-Baxter equation in his unpublished work.)

During the preparation of this paper, the second author applied this orbifold

method also to the classification of subfactors with the principal graph D
(1)
n with

M. Izumi in [IK]. These subfactors have index 4 and the extended Dynkin diagrams

D
(1)
n are regarded as orbifolds of A

(1)
2n−5 by Z2-symmetry.

Note that the procedures obtaining Dn from A2n−3 and D
(1)
n from A

(1)
2n−5 by the

Z2-symmetries are analogues of folding an interval and a circle by the Z2-flips in

the C∗-algebra setting respectively.

The main part of this work was done while the first author was a visiting Pro-

fessor at the Research Institute for Mathematical Sciences, Kyoto University. The

authors thank Research Institute for Mathematical Sciences at Kyoto University,

University of Tokyo, and Hokkaido University for their hospitality. We also thank

Professors T. Miwa and M. Okado for helpful conversations on solvable lattice mod-

els, Professor S. Popa for a comment related to Remark 5.9, and Professor H. Wenzl

for a comment on his unpublished work in connection to §3.

6



§1 Lattice models and AF algebras

One can associate to a graph Γ a lattice model — a classical statistical me-

chanical model on a planar lattice L in the following way. We first need to define

the configuration space. We can take L,Γ to be oriented, e.g., L could be the

two dimensional square lattice with downward orientation as in Figure 1.1 and Γ

could be the A(n) graph associated with the Weyl alcove of the level k integrable

representations of the Kac-Moody algebra A
(1)
N−1 = SU(N)̂:

(1.1) P
(n)
++ = {λ =

N−1∑
i=1

λiΛi | λi ≥ 1,
N−1∑
i=1

λi ≤ n− 1},

where the Λi’s are the N − 1 weights of the fundamental representations and n =

k + N .

Figure 1.1

For fixed N , we define A(n) as follows. The vertices of A(n) are given by elements

of P
(n)
++ and its oriented edges are given by N vectors ei defined by

(1.2)

e1 = Λ1,

ei = Λi −Λi−1, i = 1, . . . , N − 1,

eN = −ΛN−1.

That is, the adjacency matrix of the graph is given by Aλ,µ =
N∑

i=1

δλ+ei,µ. The

following graph is an example for N = 3, n = 6. Note that the graphs are oriented.

Figure 1.2

7



A configuration is a map σ : L(1) → Γ(1) (associating an edge σα of Γ to each

edge α of L) which is compatible with the orientations of L and Γ (if they exist)

and such that if α, β are incident edges of L, then σα and σβ are incident in Γ. Of

course, we also have to specify the Hamiltonian or energy of a configuration. The

energy associated to any face is a function of the shape of the boundary and the

distribution of Γ(1) along it. The energy of a configuration σ is then the sum of the

energy of the faces. For the square lattice L of Figure 1.1, each face has a boundary

of the form

↙↘
↘↙

and the Boltzmann weight associated to a configuration

α
↙↘

γ

β
↘↙

δ

where αβ, γδ are paths of length two in Γ with same initial and same terminal

vertices could be denoted by W (α, β, γ, δ). Strictly speaking, it could depend also

on the position of the face in Figure 1.1 in the lattice L. The Boltzmann weight of

the configuration is then

(1.3)
∏
faces

W (α, β, γ, δ)

Writing

(1.4) W (α, β, γ, δ) =
α
↙↘

γ

β
↘↙

δ

W
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we see that a (translation invariant) energy function on L for the graph Γ is precisely

the same as certain elements of the path AF algebra built from Γ.

The path algebra description of an AF algebra was introduced in [E1] or [E2],

and was subsequently rediscovered by [O1, pages 128–] or [O3, II.1], and Sunder

[Su].

We define the path model of the AF algebra associated to a Bratteli diagram

with standard embeddings. The AF algebra associated to a Bratteli diagram is

unique (up to ∗-isomorphism) and any AF algebra is isomorphic to such an alge-

bra with standard embeddings. We have a sequence Ω[m] of finite sets (each to

represent the minimal central projections of a finite dimensional C∗-algebra An),

and a multiplicity graph or matrix Λn = [λ(n)
ij ] whose rows are labelled by j ∈ Ω[n]

and columns by i ∈ Ω[n + 1], where λ
(n)
ij is the multiplicity of the simple algebra

at vertex i into that at vertex j. We adjoint A0 = C, Ω[0] = {∗}, and only con-

sider unital embeddings. The Bratteli diagram consists of the graph with vertices⊔
n≥0 Ω[n] and λ

(n)
ji edges oriented between vertex i in Ω[n] and j in Ω[n + 1] as

indicated in Figure 1.3.

Figure 1.3

The vertices Ω[n] denote the n-th level of the Bratteli diagram. For m < n,

i ∈ Ω[m], j ∈ Ω[n], let Path(i, j) denote the space of paths in the Bratteli diagram

from i to j. (Such paths have length n − m, since we have oriented the Bratteli

diagram.) For µ ∈ Path(i, j), i (respectively j) is called the initial (respectively
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terminal) vertex of µ. Then let Ω[m, n] =
⊔

i∈Ω[m],j∈Ω[n] Path(i, j), the space of

paths from level m to level n. Let

(1.5) Aij = End l2(Path(i, j))

generated by matrix units (µ, ν), µ, ν ∈ Path(i, j), (called strings, denoted by

Stringi
m−n(j) in the notation of [O3]), and

(1.6) A[m,n] =
⊕

Aij =
⊕

End l2(Path(i, j))

where the summation is over all i at level m, and j at level n. If [m, n] ⊂ [m′, n′],

we embed A[m,n] in A[m′, n′] by

(1.7) (µ, ν) 	→
∑

(αµβ,ανβ)

for µ, ν ∈ Path(i, j), where the summation is over all α ∈ Path(i′, i), β ∈ Path(j, j ′)

and i′ on level m′ and j ′ on level n′. Then

(1.8) A[0,m]′ ∩ A[0, n] = A[m,n]

The AF algebra associated with the Bratteli diagram is then

(1.9) A = lim−→An

where An = A[0, n] is embedded in An+1 by (1.7).
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Example 1.1. Let Γ be a locally finite graph, and Γ(0)
0 a set of vertices from Γ(0).

We can construct a Bratteli diagram (Γ,Γ(0)
0 )̂(and hence an AF algebra A(Γ,Γ(0)

0 ))

as the space of semi-infinite paths beginning at Γ(0)
0 . Thus

(1.10) (Γ,Γ(0)
0 )̂= {(en)∞n=0 : en ∈ Γ(1), t(en) = i(en+1), i(e0) = ∗, t(e0) ∈ Γ(0)

0 }

where we have adjoined some vertex ∗ at the beginning of the diagram — which

can sometimes be identified with a vertex of Γ.

A Boltzmann weight W then gives an element Wn in the path algebra A[n −

1, n + 1] given by

(1.11) Wn =
∑ α

↙↘
α′

β
↘↙

β′
(αβ,α′β′)

where the summation is over all αβ, α′β′ ∈ Ω[n − 1, n + 1] with same initial and

same terminal vertices.

Orbifold models have been considered in statistical mechanical models [FG], [F],

for Z2 and Z3 symmetries of the graphs in [DZ1], [DZ2], and [Z] as in Figures 1.4 and

1.5 respectively, obtaining the orbifold graphs of Figures 1.6 and 1.7 respectively.

Figures 1.4–1.7

The Boltzmann weights are given by [FG], [F],

(1.12)
α
↙↘

α′

β
↘↙

β′
W ′ (αβ,α′β′) =

∑
ω

ᾱ
↙↘

ᾱ′

β̄
↘↙̄

β′
W (ᾱβ̄, ᾱ′β̄′)
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where the weights W ′ of the orbifold model are given a linear combination of those

weights W of the initial model, with the coefficient ω being square roots, and cubic

roots, respectively (and vice versa, with the initial weights W being expressed as a

similar combination of the orbital weights W ′). Here we will interpret this orbifold

construction via path algebras, in particular, this allows us to easily generalize the

weights to the ZN orbifolds of the SU(N) models, and derive the Yang-Baxter

equation without any pain. (The Yang-Baxter equation was checked by hand in

the N = 2, 3 cases in [FG] and [F], whilst Di Francesco and Zuber [DZ1, p. 643]

expected off critical orbifolds for N > 3 models as a consequences of identities

between theta functions.)

Suppose that G is a finite group of symmetries of the graph Γ leaving a subset

Γ(0)
0 of the vertices Γ(0) globally invariant. Then there is an induced action of

G on strings α 	→ g−1α and hence on the path algebra A(Γ,Γ(0))0 by (α, β) 	→

(g−1α, g−1β). The fixed point algebra A(Γ,Γ(0)
0 )G can be described as the path

algebra built on an orbifold graph as follows.

For the case Γ = A(n), we define an action of the cyclic group ZN as follows. We

set A0 = ∗, and label the other end vertices of the graph A(n) by A1 = A0 + (n −

N)e1, A2 = A1 + (n−N)e2 , . . . , AN−1 = AN−2 + (n−N)eN−1. Define a rotation

symmetry ρ of ther graph A(n) by

(1.13) ρ(Aj +
∑

k

ckek) = Aj+1 +
∑

k

ckek+1

where the indices are in Z/NZ and ck ∈ C. Note that ρN = id. We take Γ(0)
0 =

{A0, . . . , AN−1}, the orbit of ∗ under ZN .
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In this case, the orbit of any vertex is either trivial or can be identified with

the group G. Then at any level of the path algebra A(Γ,Γ(0)) we have either

direct sums of matrix algebras ⊕h∈GAh, where Ah is a matrix algebra transformed

isomorphically to Ag+h under the action of g ∈ G. To determine [A(Γ,Γ(0)
0 )n]G,

note that the fixed point algebra of each B is identified with a direct sum of a

family {Bh : h ∈ G} of isomorphic matrix algebras indexed by G, and the fixed

point algebra of ⊕h∈GAh is identified with A0. Thus we can construct a graph Γ/G

to yield the Bratteli diagram of A(Γ,Γ(0)
0 ) as follows. We replace each trivial orbit

in Γ a copy of G, and each non-trivial orbit in Γ a singleton. These are the vertices

of the orbifold graph Γ/G. The edges of orbifold graph are obtained by considering

the inclusion of [A(Γ,Γ(0)
0 )n]G in [A(Γ,Γ(0)

0 )n+1]G. There are 3 cases to consider.

Figure 1.8

In case (a), we have each vertex of a non-trivial orbit at level n is joined to trivial

orbit by a single edge at level n + 1 for Γ, which is reversed in the orbifold graph.

Case (c) is similar. In case (b), we have each vertex of a non-trivial orbit at level

n is joined to r vertices in a non-trivial orbit at level n + 1 for Γ. In the orbifold

graph, we have r edges joining the trivial orbits.

This gives us the rules for computing the orbifold graph Γ/G, so that we have a

filtered embedding A(Γ/G,∗)→ A(Γ,Γ(0)
0 )G where ∗ ≡ Γ(0)

0 /G ∈ (Γ/G)(0).

Te describe the embedding of the path algebra A(Γ/G) in A(Γ), it is useful to

recall the cell calculus of Ocneanu [O1, O2, O3], which conveniently and concisely

describe all filtered embeddings of path algebras.
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First, we consider intertwiners between path algebras of sequences of graphs

which have the same initial and same terminal vertices, in a similar fashion to how

we constructed the path algebras themselves in the first place. If λ1, λ2, . . . and

µ1, µ2, . . . are two sequences of graphs such that

(1.14) t(λn) = i(λn+1), t(µn) = i(µn+1)

(1.15) i(λn) = i(µn), t(λn) = t(µn)

we can define (λr, µr) in

⊕
i,j

End(l2(Pathλr(i, j)), l
2(Pathµr (i, j)))

to be the intertwiners between (λr, λr) ≡ A(λ)[r, r +1] and A(µ)[r, r +1] generated

by matrix units (µ, ν), with µ ∈ Pathλr(i, j), ν ∈ Pathµr (i, j) with same initial and

same terminal vertices i and j respectively. In particular, concatenating graphs, we

have intertwiners

(1.16)
α
↙↘

β

α′
↘↙

β′

where α, α′, β, β′ are edges of λr, λr+1, µr, µr+1 respectively (where of course we do

not really need (1.15) for n = r).
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Consider a filtered ∗-homomorphism ϕ between path algebras A(λ) and A(µ)

filtered in the sense that A(λ)n is taken to A(µ)n with this restriction denoted by

ϕn. Now the ∗-homomorphism ϕn is up to an inner automorphism of A(µ)n a path

endomorphism of the type (1.7). More precisely, there is a graph in between the

n-th levels of A(λ) and A(µ), and a unitary intertwiner

un ∈ (inλ(n) · · ·λ(0), µ(n) · · ·µ(0))

such that

(1.17) ϕn = Ad(un)in.

Then since µ(n)ϕn = ϕn+1λ
(n), wn+1 = jn(u∗

n)un+1 is an intertwiner in

(in+1λ
(n+1) · · ·λ(0), µ(n+1)inλ(n) · · · λ(0))

which commutes with

(λ(n) · · · λ(0), λ(n) · · ·λ(0)) = A(λ)n.
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Hence by the extension of (1.8) to intertwiners, wn+1 ∈ (in+1λ
(n+1), µ(n+1)in) and

· −−−−→ ·� �
· ·� �
· ·
...

...

· ·� �
· −−−−→ ·

=

· −−−−→ ·� �
· −−−−→ ·� �
· −−−−→ ·
...

...

· −−−−→ ·� �
· −−−−→ ·

un

w1

w2

wn

inplements ϕn as in (1.17).

If all four graphs in, λn, µn, jn are the same (as will be the case in theA(n) models

— see Figure 1.2), then an intertwiner in (λnjn, inµn) is also an element of the path

algebra A(λ). In the theory of subfactors, the braid element plays a dual role. It

may appear in the path algebra as a specialisation (see for example (2.5)) of a

Boltzmann weight as in (1.11). There may also be a shift endomorphism κ (related

to Kramers-Wannier duality [EL, CE]) of the path algebra, κ : A(λ)→A(λ) taking

the braid element

σi ∈ A[i− 1, i + 1]→ σi+1 ∈ A[i, i + 2].

Indeed, because of the braid relation

(1.18) σiσi+1σi = σi+1σiσi+1

16



we have

(1.19) κ(σi) = lim
n→∞σ1σ2 · · · σn(σi)σ−1

n · · · σ−1
2 σ−1

1

and indeed we may have

(1.20) κ(x) = lim
n→∞σ1σ2 · · · σn(x)σ−1

n · · ·σ−1
2 σ−1

1

as in the A(n) models (see [EG1] and [GW] for other examples). In this way, the

braid elements appear as the intertwiners or connection for the filtered homomor-

phism κ. Then when we use (1.17) to transform in the double complex picture of

(2.1) an element W such as a Boltzmann weight or a genuine partition function:

↙↘
↘↙W −→

←→↙↙↘↘
↘↘↙↙←→

The elements
←↙↙
↘↘←

and
→↘↘
↙↙→

which appear here arise from “partition functions” of braid elements (with no spec-

tral parameter). In this respect, the expressions

←↙↙
↘↘←

and
→↘↘
↙↙→
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which we compute are not genuine partition functions but intertwiners between

submodel and a model. Note that a unitary matrix cannot in any case have pos-

itive entries except in rather trivial cases. In this regard, the relation between

connections and Boltzmann weights of Table 0.1 needs to be taken with a pinch of

salt.

Before we complete the intertwiners between a path algebra and its orbifold

model, let us recall the situation for subalgebras of UHF algebras arising as fixed

point algebras of limit inner actions. (Of course, we could consider actions of AF

algebras which involve both limit inner actions and graph (or Bratteli diagram)

symmetries but we refrain from doing that since the extra notational complexity is

not needed in our examples.)

Example 1.2. Let πj : G → Mn(j), be a unitary implementation of a compact

group G, and αg =
⊗∞

j=1 Adπj , the product type action of G on the UHF algebra

A =
∞⊗

j=1

Mn(j) = lim−→Am

where Am =
⊗m

j=1 Mn(j). The Bratteli diagram of this tower of algebras is given

by singletons Ω[m] and graphs µ(m) with n(m) edges connecting Ω[m] and Ω[m+1].

The fixed point algebra AG is AF being the C∗-inductive limit of the fixed point

algebras AG
m. let {χα} denote the irreducible characters of G, where χ0 is the trivial

character, and χ(j) the character of πj . For each m = 0, 1, 2 . . . , let

χ(0)χ(1) · · ·χ(m) =
∑

αmαχα
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be the decomposition of the character χ(0) · · ·χ(m) corresponding to the represen-

tation
⊕m

j=0 πn(j) into irreducible characters where amα are positive integers. By

Schur’s lemma, the fixed point algebra AG
m has the following decomposition into

simple components

(1.21) AG
m
∼=

⊕
α

Mamα

The multiplicity κ
(m)
αβ of the embedding of the simple components Mamα into

Mam+1,β is determined by the decomposition of χ(m+1)χα into irreducible char-

acters

(1.22) χ(m+1)χα =
∑

κ
(m)
αβ χβ

Thus AG ∼= A(κ), but to understand the embedding ϕ : A(u) → A(µ), we need

the Clebsch-Gordan coefficients which expresses the equality (1.22) at the repre-

sentation level. Let Ω′[m] denote the vertices at level m of the Bratteli diagram of

A(u), i.e., the irreducible representations of G which figure in (1.22). Then define

im to be the graph with dimπα edges connecting α in Ω′[m] to the singleton Ω[m].

Then the connection or intertwiner describing the embedding of A(κ) in A(µ) is

the Clebsch-Gordan coefficient U in (im+1κ
(m), λ(m)im):

(1.23) π(m+1) ⊗ πα
∼= U(

⊕
β

πβ ⊗ 1
κ
(m)
αβ

)U∗
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In a similar way, the connection for orbifold models is obtained as the Clebsch-

Gordan coefficients which put the cyclic permutations of Figure 1.8 in diagonal

form. If ω is a primitive N th root of unity, then

(a)

1 −−−−→ n� �
m −−−−→ 1

=
1√
N

ωm−n

(b)

1 −−−−→ m

p

� �
1 −−−−→ m + s

=
1√
N

δpsω
s

where m, n ∈ ZN , p, s ∈ {0, 1, 2, . . . , r − 1} ⊂ ZN .

The embedding AG → A of limit inner actions of Example 1.2 or graph symme-

tries of Example 1.1 have the property that not only are they filtered but they also

satisfy

A[λ][m, n]G → A[κ][m, n]

To see this, note that the action of G leaves invariant A[λ][m, n] (e.g., by (1.8))

and

A[λ][m, n]G ⊂ A[λ][m, n] ∩ A[κ][0, n]

as A[κ][0, n] = A[λ][0, n]G. Take x ∈ A[λ][m, n]G, y ∈ A[κ][0, m] ⊂ A[λ][0, m], then

xy = yx as x ∈ A[λ][m, n], y ∈ A[λ][0, m]. Hence x ∈ A[κ][0, n] ∩ A[κ][0, m]′ =

A[κ][m, n].
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In particular, this means that if W ∈ A[λ][m−1,m+1]G, then the corresponding

W ′ of A[λ][m− 1,m + 1] satisfy

δµ,ν

β
↙↘

β′

γ
↘↙

γ′
W ′ =

∑
α

µ ν
←→β↙↙↘↘β′

γ
↘↘↙↙

γ′←→
α α

W

where
←↙↙
↘↘←

and
→↘↘
↙↙→

are the intertwining unitary connections. In the case of Example 1.1, this explains

and verifies the vertex-IRF correspondence computations of [R, Appendix 4]. (Note

also that Property T of [R] holds since we clearly have commuting squares as the

conditional expectation En : An → AG
n is consistently given by E =

∫
αg dg).

Also it verifies the corresponding equation in the orbifold model Example 1.1 and

explains the computations of [Ka, Lemma 5.1]. Moreover, we see that ZN analogue

of [Ka, Lemma 5.1] holds in the (A(n),ZN ) case as well. The orbifold weights

which we define via the fixed point algebra coincide (via (1.8)) with the Z2 and

Z3 examples of [FG], [F], when N = 2, 3, respectively. Also (with G-invariant)

Boltzmann weights, it is clear that the Yang-Baxter equation in the path algebra

Wi(u)Wi+1(u + v)Wi(v) = Wi+1(v)Wi(u + v)Wi+1(u)

also holds in the orbifold path algebra. In particular, we verify directly the com-

putations of [FG], [F] that the orbifold weights defined from (1.12) satisfy the
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Yang-Baxter equation, and immediately generalise from N = 2, 3 to N > 3 to get

the A(n)/ZN models without having to check any identities between theta functions

[DZ1, p. 643].

§2 Preliminaries on the Hecke algebra subfactors

Now we recall basic properties of Hecke algebra subfactors of H. Wenzl [We] in

the setting of path algebra construction. Section 2 of [DZ1] and section 2 of [So]

are good reviews.

Choose the distinguished point ∗ to be the vertex Λ1 + · · ·+ ΛN−1 of the graph

A(n). We would like to get the following double sequence of the string algebra using

a connection.

(2.1)

A0,0 ⊂ A0,1 ⊂ A0,2 · · · → A0,∞
∩ ∩ ∩ ∩

A1,0 ⊂ A1,1 ⊂ A1,2 · · · → A1,∞
∩ ∩ ∩ ∩

A2,0 ⊂ A2,1 ⊂ A2,2 · · · → A2,∞
∩ ∩ ∩ ∩
...

...
...

...

Recall that a connection assigns a complex number to each admissible square.

a −−−−→ b� �
c −−−−→ d

Here the above square is called admissible if a, b, c, d are vertices of the graph

and the edges a → b, b → d, a → c, c → d come from the graph. A connection

produces unitary matrices by which we make identifications for different expressions

of strings. See [O3, II.2] for details.
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Connections in paragroups are analogues of Boltzmann weights in solvable lattice

model theory without spectral parameters and the unitarity corresponds to the first

inversion relations.

For the vertices of the graph of A(n), we define the inner product by ej · ek =

δj,k − 1
N

, and set a function sjl by sjl(λ) = sin(
π

n
(ej − el) · λ), where λ is a vertex

of the graph. The connection W is given by

(2.2)

λ −−−−→ λ + ek� �
λ + ej −−−−→ λ + ej + el

= δjkε + (1− δjl)ε̄

√
sjl(λ + ej)sjl(λ + ek)

sjl(λ)2
,

where ε =
√−1 exp

π
√−1
2n

and k = j or k = l is required to get an admissible

square. If j = l in this formula, then we have 0 as the denominator of the second

term, but we regard the second term to be zero in such a case by the factor (1−δkl).

(See [DZ1, (2.16)] and see [O1, O3] for notations on connections.) Using [DZ1,

(2.6a)], we can show the unitarity of this connection:

(2.3)

∑
b

a −−−−→ b� �
c −−−−→ d

·
b ←−−−− a� �
d ←−−−− c′

= δc,c′,

∑
c

a −−−−→ b� �
c −−−−→ d

·
b′ ←−−−− a� �
d ←−−−− c

= δb,b′,

Here and later we use the following conventions.

(2.4)

a −−−−→ b� �
c −−−−→ d

=

b ←−−−− a� �
d ←−−−− c

=

c −−−−→ d 
a −−−−→ b

=

d ←−−−− c 
b ←−−−− a

.
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For the horizontal string algebra A0,0 ⊂ A0,1 ⊂ A0,2 · · · , we define elements U0
m

by

(2.5)

U0
m =

∑
|α|=m−1

j,k,l

(1− δjl)

√
sjl(r(α) + ej)sjl(r(α) + ek)

sjl(r(α))2
(α · ej · el, α · ek · (ej + el− ek)).

Then these operators U0
m satisfy the relations

(U0
m)2 = βU0

m,

U0
mU0

m′ = U0
m′U0

m, if |m−m′| ≥ 2,

U0
mU0

m+1U
0
m − U0

m = U0
m+1U

0
mU0

m+1 − U0
m+1,

where β = 2 cos
π

n
as in [DZ2, (2.6)] and the algebra A0,m is generated by

U0
1 , . . . , U0

m−1 as in [We]. It will be shown in the proof of Theorem 3.3 that this

string algebra double sequence construction gives Wenzl’s subfactors in [We].

In the case of unoriented graphs, the sequence

A0,∞ ⊂ A1,∞ ⊂ A2,∞ ⊂ A3,∞ · · ·

given by the string algebra double sequence construction is the Jones tower of the

subfactor A0,∞ ⊂ A1,∞ as in [O3, II.6]. But the above double sequence does not

produce the Jones tower because our graph is oriented. In order to get the Jones

tower, we need the following arguments for “reversing” the orientation of edges.
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Denote the entries of the Perron-Frobenius eigenvector of the graph A(n) by µ(·)

with the normalization µ(∗) = 1. Then this gives the unique trace on the string

algebra as in [E1], [O3, II.3] by

tr(σ) = δσ+,σ−β−|σ|µ(r(σ)), σ = (σ+, σ−).

Let
a −−−−→ b� �
c −−−−→ d

be an admissible square. Then we define the values of the following squares.

Definition 2.1.
d −−−−→ c� �
b −−−−→ a

=

a −−−−→ b� �
c −−−−→ d

,

c −−−−→ d� �
a −−−−→ b

=

b −−−−→ a� �
d −−−−→ c

=

√
µ(a)µ(d)
µ(b)µ(c)

a −−−−→ b� �
c −−−−→ d

.

Note that these formulas hold for unoriented graph cases as in [O3, I.3] but now

the left hand sides are undefined because the graph is oriented and the squares

on the left hand sides are not admissible. We need unitarity also for these newly

defined connections.
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Proposition 2.2. For connections in Definition 2.1, we have unitarity identities

(2.2) with conventions (2.3).

Proof. First we have to prove the following.

∑
d

√
µ(a)µ(d)
µ(b)µ(c)

a −−−−→ b� �
c −−−−→ d

·
√

µ(a′)µ(d)
µ(b)µ(c)

a′ −−−−→ b� �
c −−−−→ d

= δa,a′ .

Note that the diagram
A0,m ⊂ A0,m+1

∩ ∩
A1,m ⊂ A1,m+1

gives a commuting square in the sense of [GHJ, §4.2] by [We, Proposition 3.2]. Then

Ocneanu’s computation at the end of [O2] produces the above equality. (This can

be easily checked directly with formulas for the conditional expectations in [O3,

II.3]. Also see [HS], [Sc, 1.1].)

If we fix b and c in the above formula, the numbers of possible a and d are

equal. This implies the other identities. (That is, an isometric square matrix is a

unitary.) Q.E.D.

Ocneanu’s computation cited above means that in the string algebra situations,

the commuting square condition corresponds to the second inversion relations in

solvable lattice models. (See [Ba] for the inversion relations.)

With these new definitions, we construct a double sequence of string algebras

(1.1) as follows. For the inclusions

Al,m ⊂ Al,m+1

∩ ∩
Al+1,m ⊂ Al+1,m+1

,
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we use the graph A(n) and the original connection if l is even, and use the graph

A(n) for the horizontal edges and the graph Ã(n) with the orientation reversed for

the vertical edges and the new connection of l is odd. That is, if l is odd, we have

the following type of squares.

· A(n)−−−−→ ·
Ã(n)

� �Ã(n)

· −−−−→
A(n)

·

The vertices of A(n) can be colored by N colors in Z/NZ = {0, 1, . . .N − 1} so

that the starting vertex ∗ has color 0 and each oriented edge goes from a color k to

a color k+1, k ∈ Z/NZ. Take a subgraph A(n)
k of A(n) which has vertices of colors

k and k + 1 and edges connecting these vertices. We regard A(n)
k as an unoriented

graph. In this way, the above setting can be described as follows: For horizontal

edges, we always use the original (oriented) graph A(n) and for the vertical edges we

use the (unoriented) graphs A(n)
m . Thus in the diagram (1.1), the colors of vertices

corresponding to each algebra are illustrated as follows.

0 1 2 · · · N − 1 0 1 · · ·
1 2 3 · · · 0 1 2 · · ·
0 1 2 · · · N − 1 0 1 · · ·
1 2 3 · · · 0 1 2 · · ·
0 1 2 · · · N − 1 0 1 · · ·
...

...
... · · · ...

...
... · · ·

Note that the Perron-Frobenius eigenvector µ also gives a Perron-Frobenius

eigenvector for each A(n)
k because the incidence matrix of the graph A(n) is normal.

(See the following example.)

Figure 2.1
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Because the vertical graphs A(n)
k are unoriented, we can define the Jones projec-

tions in the vertical string algebras by the same formula as in [O3, II.3]:

el =
∑

|α|=l−1
|v|=|w|=1

1
β

µ(r(v))1/2µ(r(w))1/2

µ(r(α))
(α · v · ṽ, α · w · w̃),

where β is the Perron-Frobenius eigenvalue for the vertical graph. As in [O3, II.5]

we get flatness of these vertical Jones projections by Definition 2.1. That is, if we

embed el ∈ Al+1,0 into Al+1,m by putting trivial tails and transform it to the form

horizontal edges of length m followed by vertical edges of length l + 1 using the

connection, we get the following expression.

el =
∑

|α|=m
|α′|=l−1
|v|=|w|=1

1
β

µ(r(v))1/2µ(r(w))1/2

µ(r(α))
(α · α′ · v · ṽ, α · α′ · w · w̃),

where α is horizontal and α′ is vertical.

Denote the conditional expectation from Al+1,∞ onto Al,∞ by El. Note that

if x ∈ Al+1,m, then El(x) is given by the conditional expectation of x onto Al,m

because of the commuting square condition. Then it is easy to see that the above

Jones projections satisfy

(1) elx = xel, for x ∈ Al−1,∞.

(2) elxel = El−1(x)el , for x ∈ Al,∞.

(3) 〈Al−1,∞, el〉 = Al,∞.
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Thus if we set N = A0,∞ and M = A1,∞, then the sequence

A0,∞ ⊂ A1,∞ ⊂ A2,∞ ⊂ A3,∞ ⊂ A4,∞ ⊂ · · ·

can be identified with the Jones tower

N ⊂M ⊂M1 ⊂M2 ⊂M3 ⊂ · · · ,

by [PP, Proposition 1.2].

At the end of this section, we prove certain technical properties of the original

connections on the graph A(n). These for the case N = 2 correspond to Lemmas

4.3, 4.4, 4.5 in [Ka].

Lemma 2.3. For the original connection W on A(n), we have the following iden-

tities.

λ −−−−→ λ + ej� �
λ + ej −−−−→ λ + ej + ek

= (−1)(ej−ek)·λ
sin

π

n

sin
((ej − ek) · λ)π

n

ε−2(ej−ek)·λ−1,

λ −−−−→ λ + ek� �
λ + ej −−−−→ λ + ej + ek

=

√
sjk(λ + ej)sjk(λ + ek)

sjk(λ)2
ε̄,

λ −−−−→ λ + ej� �
λ + ej −−−−→ λ + 2ej

= ε,
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where we assume j �= k in the first and the second cases.

Proof. These are verified directly using the definition of W and the sine law. Note

that (εj − ek) · λ is a non-zero integer for j �= k. Q.E.D.

Next we consider a large diagram. As in [O3, II.3] or [Ka, §1], a large diagram

means the sum of the products of connection values over all the configurations. (See

§1 for its similarity to partition functions. We also call them partition functions.)

The arguments of partition functions are determined up to π as follows.

Proposition 2.4. The value of an l × k-diagram

λ −−−−→ · · · −−−−→ λ′� �
...

...� �
λ′′ −−−−→ · · · −−−−→ λ′′′

,

is in the set

R · ελ·λ+λ′′′·λ′′′−λ′·λ′−λ′′·λ′′−kl(N−2)/N .

Proof. If k = l = 1, this follows directly from Lemma 1.3. The general case can be

proved by induction. Q.E.D.

§3 The Yang-Baxter equation and flatness

In this section, we compute the canonical commuting squares (in the sense of

Popa [P3]) for subfactors of Wenzl [We] using solutions to the Yang-Baxter equa-

tions by Jimbo-Miwa-Okado [JMO1, JMO2]. We also show some computations of
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partition functions follow from the Yang-Baxter equation — indeed vertical par-

allel transport for Wenzl subfactors and their orbifolds is closely related to the

Yang-Baxter equation (Lemma 3.1).

Some parts of this section seem to be known to several specialists. (Wenzl

mentioned the use of the R-matrix version of the Yang-Baxter equation for compu-

tations of higher relative commutants at the end of his paper [We] and the second

author saw Wenzl show some examples of the principal graphs of his subfactors in

his seminar talk, but he was unable to compute the canonical commuting squares.)

However, we have been unable to find actual computations of these in the literature,

and we will need several explicit formulae later in this paper, so we will present the

details here.

First we show that the connection W satisfies the Yang-Baxter equation, or

the star-triangle relation, without a spectral parameter. This means the following.

Take a hexagon

↙→↘↘→↙

where the vertices and edges are taken from the graph A(n). For each such a

hexagon, we first consider configurations ↘↙→ for inside of the hexagon, multiply

these three connection values of the parallelograms and make a sum of these prod-

ucts over all the configurations. Similarly we make another sum over configurations

→↙↘ with the same boundary conditions. Then our claim is that these two numbers

coincide. We state this as a propositions and prove it.
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Proposition 3.1. The connection W on A(n) satisfies the Yang-Baxter equation

in the above sense.

Proof. We use solutions of Jimbo-Miwa-Okado. Let p → 0 and L = n in their

formulas [JMO2, (2.4a–c)]. Then the solution are now Laurent polynomials of x =

exp(
πu
√−1
n

) and the highest terms have degree 1. Define another connection W ′ by

taking a coefficient of x and multiplying it by −2
√−1ε̄ sin

π

n
. Direct computations

show the following identities.

W ′


λ −−−−→ λ + ej� �

λ + ej −−−−→ λ + ej + ek

 = (−1)(ej−ek)·λ
sin

π

n

sin
((ej − ek) · λ)π

n

ε−2(ej−ek)·λ−1,

W ′


λ −−−−→ λ + ek� �

λ + ej −−−−→ λ + ej + ek

 = −
√

sjk(λ + ej)sjk(λ + ek)
sjk(λ)2

ε̄,

W ′


λ −−−−→ λ + ej� �

λ + ej −−−−→ λ + ej + ej

 = ε,

where j �= k in the first and the second cases. Comparing these and formulas in

Lemma 2.3, we know that W and W ′ coincide in the first and the third cases and

differ only by sign in the second case. The above definition of W ′ shows that the

Yang-Baxter equation holds for W ′. Looking at the sign difference between W

and W ′ carefully for all the possible cases, we can conclude that the Yang-Baxter

equation also holds for W . Q.E.D.
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We thank Professor M. Okado for explaining the above method to us. See [M,

§1] for a similar computation.

Next we define another connection W ′′ by

W ′′


λ −−−−→ λ′� �
λ′′ −−−−→ λ′′′

 = W


λ −−−−→ λ′′� �
λ′ −−−−→ λ′′′

.

Lemma 3.2. The connection W ′′ and the new connection defined in Definition 2.1

satisfy the star-triangle relation.

Proof. Note that each of two ways of configurations, we take downward edges from

the oriented graph A(n) and horizontal edges from the Ã(n) with the orientation

reversed. Thus in the configurations ↘↙→, the left parallelogram has a value of W ′

and the right two parallelograms have values defined in Definition 2.1, and in the

other configurations →↙↘, the right parallelogram has a value of W ′ and the left

two parallelograms have values defined in Definition 2.1.

Then we get the desired equalities by taking complex conjugates of the original

star-triangle relation in Proposition 3.1 and multiplying the both hand sides by

certain terms involving µ(·). Q.E.D.

We can prove the following characterization of the tower of the relative commu-

tants.
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Theorem 3.3. In the string algebra double sequence (Ak,l) discussed at the end of

§2, we have A′
0,∞ ∩ Ak,∞ = Ak,0.

Proof. First we prove A′
0,∞ ∩Ak,∞ ⊃ Ak,0.

We set σ0
m = ε + ε̄βU0

m for U0
m in §2. Because these generate A0,∞, it is enough

to prove that each σ0
m commutes with Ak,0. The operator σ0

m is a unitary because

β = −ε2 − ε̄2. (Note that our ε4 and σ0
m correspond to q and ε−3gm in [We, §2].)

Because the formula for σ0
m has the same form as the definition of the connection

W , this is a face operator in the sense of [R, page 400]. We also define σ1
m similarly

for the string algebras A0,0 ⊂ A1,0 ⊂ A1,1 ⊂ A1,2 · · · .

Because we have the star-triangle relation, the identification using the connection

transforms σ0
m to σ1

m+1, which is also a face operator, by [R, Proposition 5]. This

means that σ0
m commutes with A1,0.

Similarly, by the other star-triangle relation in Lemma 3.2, we get that σ1
m+1

is identified with a face operator in the next step, that is, a face operator for the

second row

A2,0 ⊂ A2,1 ⊂ A2,2 ⊂ A2,3 · · ·

of the double sequence. This means that σ0
m commutes with A2,0.

Repeating these two cases inductively, we get A′
0,∞ ∩Ak,∞ ⊃ Ak,0.

For the other inclusion, we apply Wenzl’s dimension estimate [We, Theorem 1.6].

Q.E.D.

The above proof means that the subfactor A0,∞ ⊂ A1,∞ is expressed as

〈σ1
2 , σ1

3 , σ1
4 , . . .〉 ⊂ 〈σ1

1 , σ1
2 , σ1

3 , . . .〉. Because the above representations of the Hecke
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algebra are same as the (N,n)-representations in [We, §2], this string algebra con-

struction gives Wenzl’s subfactors in [We, Theorem 3.7] with the index
sin2 Nπ

n

sin2 π

n

.

As a direct corollary to the above, we get the following.

Corollary 3.4. For the above subfactors of Wenzl, the principal graph is given by

A(n)
0 .

Proof. This is clear because the vertical string algebra sequence

A0,0 ⊂ A1,0 ⊂ A2,0 ⊂ A3,0 · · ·

is given by the unoriented graph A(n)
0 . Q.E.D.

Here are some examples of the principal graphs. (The second author saw H.

Wenzl show these graphs without proofs in his talk at the Mittag-Leffler Institute

in September, 1988.)

Figure 3.1

M. Izumi [I, Figures 5, 7] computed the principal graphs for subfactors con-

structed in [We, page 360] with index
sin2 nπ

N

sin2 π

N

for the case n = 3. (These are

constructed by cutting the subfactor N ⊂M1 by a minimal projection in N ′ ∩M1

for the subfactor N ⊂ M of type AN−1. These are also the same as subfactors

in [GHJ, §4.5] for diagrams An. So Okamoto’s method [Ok] also gives the princi-

pal graphs.) Figure 3.1 shows that the above subfactors are different from these

because they have the different principal graphs while the indices are equal.
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With further work, we can compute the canonical commuting squares for these

subfactors as follows.

In the above construction, we used the graphs A(n), Ã(n), A(n), Ã(n), and so on,

in this order, for the vertical directions. Next we construct another double sequence

of string algebras starting from ∗ by using the graphs Ã(n), A(n), Ã(n), A(n), and

so on, in this order, for the vertical direction. We label these as follows.

B1,−1 ⊂ B1,0 ⊂ B1,1 · · · → B1,∞
∩ ∩ ∩ ∩

B2,−1 ⊂ B2,0 ⊂ B2,1 · · · → B2,∞
∩ ∩ ∩ ∩

B3,−1 ⊂ B3,0 ⊂ B3,1 · · · → B3,∞
∩ ∩ ∩ ∩
...

...
...

...

For the each of the inclusions B1,−1 ⊂ B1,0 and A0,0 ⊂ A1,0, we have a single

edge. By identifying these, we can identify Ak,l and Bk,l for k ≥ 1, l ≥ 0. In this

way, we get the following double sequence.

A0,0 ⊂ A0,1 ⊂ A0,2 · · · → N
∩ ∩ ∩ ∩

A1,−1 ⊂ A1,0 ⊂ A1,1 ⊂ A1,2 · · · → M
∩ ∩ ∩ ∩ ∩

A2,−1 ⊂ A2,0 ⊂ A2,1 ⊂ A2,2 · · · → M1

∩ ∩ ∩ ∩ ∩
...

...
...

...
...

Note that in the above diagram, the colors of vertices corresponding to each

algebra are illustrated as follows.

0 1 2 · · · N − 1 0 1 · · ·
0 1 2 3 · · · 0 1 2 · · ·

N − 1 0 1 2 · · · N − 1 0 1 · · ·
0 1 2 3 · · · 0 1 2 · · ·

N − 1 0 1 2 · · · N − 1 0 1 · · ·
...

...
...

... · · · ...
...

... · · ·
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The same arguments as in the proof of Theorem 3.3 shows Mk ∩M ′ = Ak+1,−1.

Thus we can determine the canonical commuting squares in the sense of [P, §6] for

the above subfactors as follows.

Theorem 3.5. For the above subfactor N ⊂M , the canonical commuting squares

are given by
A1,−1 ⊂ A2,−1 ⊂ A3,−1 ⊂ · · ·
∩ ∩ ∩

A1,0 ⊂ A2,0 ⊂ A3,0 ⊂ · · ·

This means that only the subgraph connecting vertices with colors N − 1, 0, 1 is

essential and the other parts of the graph are redundant from the operator algebraic

viewpoint. We also have the following corollary.

Corollary 3.6. For the above subfactors, the “dual” principal graph is given by

A(n)
N−1, which is isomorphic to A(n)

0 .

Note that A(n)
0 and A(n)

N−1 are isomorphic as graphs, but the way these are con-

nected is non-trivial. (Consider the Bratteli diagrams for the sequence in Theorem

3.5.) This means that “contragredient” map in the sense of Ocneanu [O1, page 150]

is non-trivial. See the following example.

Figure 3.2

Note that a trivial contragredient map would produce the following graph.

Figure 3.3
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§4 Orbifold construction

We set A0 = ∗ and label the other end vertices of the graph A(n) by A1 =

A0 + (n−N)e1, A2 = A1 + (n −N)e2 , . . . , AN−1 = AN−2 + (n−N)eN−1.

Define a rotation symmetry ρ of the graph A(n) by

ρ(Aj +
∑

k

ckek) = Aj+1 +
∑

k

ckek+1,

where indices are in Z/NZ and ck ∈ C. Note that ρN = id and the connection W

is invariant under this ρ:

a −−−−→ b� �
c −−−−→ d

=

ρ(a) −−−−→ ρ(b)� �
ρ(c) −−−−→ ρ(d)

.

Next we assume n ≡ 0 (mod N), and construct a double sequence of the string

algebra as in §2, but we allow any of Aj as starting points of edges. That is,

we took a string (ρ+, ρ−) with s(ρ+) = s(ρ−) = ∗, r(ρ+) = r(ρ−), |ρ+| = |ρ−|

in §2, but now we drop the requirement s(ρ+) = s(ρ−) = ∗ and instead impose

s(ρ+), s(ρ−) ∈ {A0, . . . , AN−1}. The multiplication is defined by the same formula

as usual. Note that we have a connected Bratteli diagram by the assumption

n ≡ 0 (mod N). We label this double sequence as follows.

C0,0 ⊂ C0,1 ⊂ C0,2 · · · → C0,∞
∩ ∩ ∩ ∩

C1,0 ⊂ C1,1 ⊂ C1,2 · · · → C1,∞
∩ ∩ ∩ ∩

C2,0 ⊂ C2,1 ⊂ C2,2 · · · → C2,∞
∩ ∩ ∩ ∩
...

...
...

...

38



Note that C0,0 has N copies of C and that as in §2, for the inclusions

Cl,m ⊂ Cl,m+1

∩ ∩
Cl+1,m ⊂ Cl+1,m+1

,

we use the graph A(n) and the original connection if l is even, and use the graph

A(n) for the horizontal edges and the graph Ã(n) with the orientation reversed for

the vertical edges and the new connection of l is odd. (The case N = 2 of this

construction appeared in [Ka, §5], in which case, the original graph is a Dynkin

diagram of type A.)

We can apply ρ to each Cl,m as a ∗-algebra isomorphism and denote it by ρ

again. (Because the connection is invariant under ρ, the identifications based on

the connection are compatible with this ρ, thus this automorphism is well-defined.)

Set Dl,m = Cρ
l,m, the fixed point algebra under ρ. Set Dl,∞ to be the weak closure

of ∪mDl,m in its GNS-representation with respect to the trace and we study double

sequence of Dl,m. Because the vertical Jones projections el for the double sequence

(Cl,m) are invariant under ρ by definition, we get el ∈ Dl,∞. An argument as in §2

shows that Dl,∞ = 〈Dl−1,∞, el−1〉 and

D0,∞ ⊂ D1,∞ ⊂ D2,∞ ⊂ D3,∞ ⊂ · · ·

is the Jones tower for the subfactor D0,∞ ⊂ D1,∞, and

[D1,∞ : D0,∞] = [C1,∞ : C0,∞] = [A1,∞ : A0,∞] =
sin2 Nπ

n

sin2 π

n

.
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(This can be regarded as a very special case of the Invariance Principle of A. J.

Wassermann [Wa, page 227] or [GHJ, Lemma 4.7.1].)

Our construction of Clm may look artificial, but we prove that the subfactor

C0,∞ ⊂ C1,∞ is conjugate to the original construction.

Proposition 4.1. The subfactor C0,∞ ⊂ C1,∞ is conjugate to the original Hecke

algebra subfactor of Wenzl, and hence the subfactor D0,∞ ⊂ D1,∞ is realized as

simultaneous fixed point algebras of the Hecke algebra subfactors of Wenzl by the

ZN -action.

Proof. It is clear that the original Hecke algebra subfactor is obtained by cutting

C0,∞ ⊂ C1,∞ by the projection in C0,0 corresponding to ∗. In C0,∞, the sequence

of the face operators {Wn} is central for C1,∞. If we shift this sequence by 1,

we get another central sequence which does not commute with the original central

sequence. So by [Bi], our subfactor C0,∞ ⊂ C1,∞ has simultaneous splittings of a

common hyperfinite II1 factor, which is called the relative McDuff condition. This

implies the conclusion. (Also see [P2, page 200].) Q.E.D.

We call these subfactors D0,∞ ⊂ D1,∞ orbifold subfactors. (This construction is

related to orbifold models in solvable lattice model theory [DZ1, DZ2, F, FG, Ko,

Z] and M. Choda’s work [C] on duality of graphs.) We would like to compute the

higher relative commutants for this subfactor. By n ≡ 0 (mod N), there is a unique

vertex C in A(n) that is invariant under ρ and all the vertices Aj ’s have color 0.

Note that the center C is expressed as

A0 +
n−N

N
((N − 1)e1 + (N − 2)e2 + · · ·+ eN−1).
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(See the following example.)

Figure 4.1

We would like to show the vertical string algebra sequence

D0,0 ⊂ D1,0 ⊂ D2,0 ⊂ D3,0 · · ·

gives the higher relative commutants as in Theorem 3.3 under some appropriate

conditions. For this, it is enough to prove σσ′ = σ′σ for σ ∈ D0,m, σ′ ∈ Dl,0,

because we can apply Wenzl’s estimate [We, Theorem 1.6] again to get the reversed

inclusion.

We work in more details on the equality σσ′ = σ′σ. Let α, β be paths with the

same length on A(n) and with s(α) = A0, s(β) = Aj , r(α) = r(β) = B0, where B0

is some vertex of A(n). Set ρl(B0) = Bl and σ =
∑N−1

l=0 (ρl(α), ρl(β)). (See the

following example.)

Figure 4.2

Note that σ’s of the above form span the
⋃

m D0,m. Similarly take paths α′, β′

with the same length on the graph A(n)
0 without orientation and with s(α) =

A0, s(β) = Ak, r(α) = r(β) = C0, where C0 is some vertex of A(n)
0 . Setting

ρl(C0) = Cl and σ′ =
∑N−1

l=0 (ρl(α′), ρl(β′)), we again have that the vertical string

algebra
⋃

m Dm,0 is spanned by σ′’s of the above form.

Thus we have to study under what conditions we get σσ′ = σ′σ. We need a

lemma here.
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Lemma 4.2. We have the identity

Al
ρl(α)−−−→ · · · −−→ · ←−− · · · ρl(α0)←−−−− Al

ζ

� �ζ

...
...� �

Al+k −−→
ξ1

· · · −−→ · ←−− · · · ←−−
ξ2

Al+k

= δρl+k(α),ξ1
δρl+k(α0),ξ2

,

for paths α, α0 on A(n) and ζ on A(n)
0 .

Proof. Without loss of generality, we may assume that l = 0. The equality means

that the string (α,α0) moves to ρk(α,α0) under the vertical parallel transport from

A0 to Ak. This is so because the face operators move to face operators as in the

proof of Theorem 3.3, the face operators generate the entire string algebra, and the

face operators are invariant under ρ. Q.E.D.

By embedding σ and σ′ into the same algebra and using Lemma 4.2, we get the

following two expressions.

σ′σ =
∑
l,η,η′

Al
ρl(α)−−−→ · · · −−→ Bl

ρl(α′)

� �η

...
...� �

Cl · 
...

...

ρl(β′)

 η′

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k

(ρl(α) · η, ρl+k(β) · η′),
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σσ′ =
∑
l,η,η′

Al+j
ρl(β)−−−→ · · · −−→ Bl

ρl+j(α′)

� �η

...
...� �

Cl+j · 
...

...

ρl+j(β′)

 η′

Al+j+k −−−−−→
ρl+k(β)

· · · −−→ Bl+k

(ρl(α) · η, ρl+k(β) · η′),

where η, η′ are vertical strings with r(η) = r(η′). These imply that the identity

σσ′ = σ′σ is equivalent to the following identities.

(4.1)

Al
ρl(α)−−−→ · · · −−→ Bl

ρl(α′)

� �η

...
...� �

Cl · 
...

...

ρl(β′)

 η′

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k

=

Al+j
ρl(β)−−−→ · · · −−→ Bl

ρl+j(α′)

� �η

...
...� �

Cl+j · 
...

...

ρl+j(β′)

 η′

Al+j+k −−−−−→
ρl+k(β)

· · · −−→ Bl+k

,

for all l, η, η′.

We change the orientations of vertical arrows of the lower halves of the diagrams,

take the squares of the difference of the both hand sides of (4.1), and then take a
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sum over all η, η′. The equality σσ′ = σ′σ is equivalent to this sum being 0. By

expanding the summation, we get the following identity. (See [Ka, Lemma 5.2] for

this method in the case N = 2.)

(4.2)

Al
ρl(α)−−−→ · · · −−→ Bl ←−− · · · ρl(α)←−−− Al

ρl(α′)

� �ρl(α′)

...
...� �

Cl Cl� �
...

...

ρl(β̃′)

� �ρl(β̃′)

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k ←−− · · · ←−−−−−
ρl+k(α)

Al+k

+

Al+j
ρl(β)−−−→ · · · −−→ Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl(α′)

...
...� �

Cl+j Cl+j� �
...

...

ρl+j(β̃′)

� �ρl+j(β̃′)

Al+j+k −−−−−→
ρl+k(β)

· · · −−→ Bl+k ←−− · · · ←−−−−−
ρl+k(β)

Al+j+k
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−

Al
ρl(α)−−−→ · · · −−→ Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl+j(α′)

...
...� �

Cl Cl+j� �
...

...

ρl(β̃′)

� �ρl+j(β̃′)

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k ←−− · · · ←−−−−−
ρl+k(β)

Al+j+k

−

Al+j
ρl(β)−−−→ · · · −−→ Bl ←−− · · · ρl(α)←−−− Al

ρl+j(α′)

� �ρl(α′)

...
...� �

Cl+j Cl� �
...

...

ρl+j(β̃′)

� �ρl(β̃′)

Al+j+k −−−−−→
ρl+k(β)

· · · −−→ Bl+k ←−− · · · ←−−−−−
ρl+k(α)

Al+k

= 0

By Lemma 4.2, the values of the first and second terms in this expression are

equal to 1. Then equality (4.2) is equivalent to the following identity.
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(4.3) Re

Al
ρl(α)−−−→ · · · −−→ Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl+j(α′)

...
...� �

Cl Cl+j� �
...

...

ρl(β̃′)

� �ρl+j(β̃′)

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k ←−− · · · ←−−−−−
ρl+k(β)

Al+j+k

= 1.

We will show that above equality (4.3) holds under the following assumptions.

Assumption 4.3.

(1) N is odd.

(2) The graph A(n)
0 has no non-trivial graph automorphism fixing ∗.

Note that the above two conditions hold if N = 3 and n ≥ 9. (See Figure 3.1.)

(When N = 3 and n = 6, we get a subfactor with index 4, and classification of

subfactors with index 4 is already known by [P4] (see also [IK]), we do not have to

worry about this case.)

We make some comments on the case N = 2. In this case, we only had to work

on a single diagram as in [Ka, Lemma 5.2]. The original graph is An−1 and the

orbifold graph is Dn/2+1. It was proved in [Ka, Proposition 4.2] that the left hand

side of (4.3) is 1 if n ≡ 2 (mod 4) and −1 if n ≡ 0 (mod 4). Thus we had flatness
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only in the case n ≡ 2 (mod 4). This means that a Z/2Z-obstruction for flatness

appeared in the orbifold process. What we will prove here is that this obstruction

vanishes under Assumption 4.3.

Assuming that (4.3) is valid, we can compute the principal graph of the subfactor

as the orbifold graph of A(n)
0 under ρ. Some examples are shown below for the case

N = 3.

Figure 4.3

Our proof of equality (4.3) is rather lengthy, so it is divided into the following

steps. First set

aξ =

Al
ρl(α)−−−→ · · · −−→ Bl

ρl(α′)

� �ξ

...
...� �

Cl ·� �
...

...

ρl(β̃′)

� �
Al+k −−−−−→

ρl+k(α)
· · · −−→ Bl+k

, bξ =

Al+j
ρl(β)−−−→ · · · −−→ Bl

ρl+j(α′)

� �ξ

...
...� �

Cl+j ·� �
...

...

ρl+j(β̃′)

� �
Al+j+k −−−−−→

ρl+k(β)
· · · −−→ Bl+k

.

Denoting the partition function which appears in the left hand side of (4.3) by c,

we get c =
∑

ξ aξ b̄ξ. We prove c = 1 under Assumption 4.3 in the following steps.

(1) Prove
∑

ξ |aξ|2 =
∑

ξ |bξ|2 = 1 using the Yang-Baxter equation.
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(2) Prove |∑ξ aξ b̄ξ| = 1 using (2) of Assumption 4.3 and properties of the Jones

projections. (This implies aξ = cbξ for all ξ and |c| = 1 because we have

equality in the Cauchy-Schwarz inequality.)

(3) Using Proposition 2.4, prove c ∈ R, which means c = ±1.

(4) Prove c = 1 if Bl = C , the fixed point of ρ, using (1) of Assumption 3.2.

(5) Get a contradiction from (4) by assuming c = −1 for some general case,

where Bl is arbitrary.

The first step is done by Lemma 4.2. Details of the other four steps will be

given in the next section. Note that an induction as in [Ka, Proposition 4.2] does

not work well in our situation because the graph is more complicated than that for

N = 2, the Dynkin diagrams An.

§5 Computations of partition functions

We will prove c = 1 under Assumption 4.3 in this section. First we need the

following lemma.

Lemma 5.1. Let G be a bipartite unoriented graph with the distinguished vertex

∗. Denote the string algebra of strings with length k with the starting point ∗

by String(k)
∗ G. Let π be an automorphism of the string algebra, π(String(k)

∗ G) =

String(k)
∗ G, with π(ek) = ek for all the vertical Jones projections ek’s. If G has only

single edges and G has no-nontrivial graph automorphism fixing ∗, then π(ξ, ξ) =

(ξ, ξ) for all paths ξ.

Proof. Because the automorphism π fixes the Jones projections, it gives an auto-

morphism of the graph G. By assumption, this graph automorphism is trivial.
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We prove the assertion by induction on length of ξ. Suppose that we have

π(ξ, ξ) = (ξ, ξ) for |ξ| ≤ k and we work for ξ · α with |ξ| = k, |α| = 1.

Suppose first that (ξ · α, ξ · α) ∈ String(k)
∗ G · ek · String(k)

∗ G. Then the string

(ξ · α, ξ · α) can be expressed as a(ξ, η)ek(η, ξ), where |η| = k, a ∈ C, a �= 0. By

assumption, π(ξ, η) = b(ξ, η) for some b ∈ C, |b| = 1, thus we get π(ξ, ξ) = (ξ, ξ).

Next assume that (ξ · α, ξ · α) /∈ String(k)
∗ G · ek · String(k)

∗ G. In this case we

get π(ξ, ξ) = (ξ, ξ) because the graph has only single edges and the induced graph

automorphism is trivial. Q.E.D.

Lemma 5.2.

Al
ρl(α)−−−→ · · · −−→ Bl

ρl(α′)

� �
...

...� �
Cl ·� �
...

...

ρl(β̃′)

� �
Al+k −−→

ξ
· · · −−→ Bl+k

= 0, if ξ �= ρl+k(α).

Proof. This easily follows from Lemma 4.2. Q.E.D.
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Lemma 5.3.

Al
ξ−−→ · · · −−→ B

ζ

� �η

...
...� �

Al+k −−−→
ρk(ξ)

· · · −−→ ρk(B)

=

Al
ξ′−−→ · · · −−→ B

ζ

� �η

...
...� �

Al+k −−−−→
ρk(ξ′)

· · · −−→ ρk(B)

,

where B is some vertex of A(n) and |ξ| = |ξ′|.

Proof. We make a sum over η of the squares of the difference between the both

hand sides as in §4. By Lemma 4.2, we get the sum is equal to 1 + 1− 1− 1 = 0.

Q.E.D.

The next Lemma proves step (2) at the end of §4.

Lemma 5.4. We have |c| = 1.
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Proof. First note that we have the following identity by Lemma 5.2.

|c|2 =

Al
ρl(α)−−−→ · · · −−→ Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl+j(α′)

...
...� �

Cl Cl+j� �
...

...

ρl(β̃′)

� �ρl+j(β̃′)

Al+k Al+j+k

ρl(β̃′)

 ρl+j(β̃′)

...
... 

Cl Cl+j 
...

...

ρl(α′)

 ρl+j(α′)

Al −−−→
ρl(α)

· · · −−→ Bl ←−− · · · ←−−−
ρl(β)

Al+j

.

By applying Lemma 4.2 to the horizontal parallel transport from Al to Al, we
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get the following.

Al
ρl(α)−−−→ · · · −−→ Bl

ξ

� �η

...
...� �

Al+k · 
...

...

ξ

 η′

Al −−−→
ρl(α)

· · · −−→ Bl

=

Al
ζ−−→ · · · −−→ Al −−→ · · · ρl(α)−−−→ Bl

ξ

� �η

...
...� �

Al+k · 
...

...

ξ

 η′

Al −−→
ζ
· · · −−→ Al −−→ · · · −−−→

ρl(α)
Bl
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=

Al
ζ′−−→ · · · −−→ Al+j −−→ · · · ρl(β)−−−→ Bl

ξ

� �η

...
...� �

Al+k · 
...

...

ξ

 η′

Al −−→
ζ′
· · · −−→ Al+j −−→ · · · −−−→

ρl(β)
Bl

=

Al+j
ρl(β)−−−→ · · · −−→ Bl

ρj(ξ)

� �η

...
...� �

Al+j+k · 
...

...

ρj(ξ)

 η′

Al+j −−−→
ρl(β)

· · · −−→ Bl

.
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Here |ζ | = |ζ ′| and we used Lemma 5.3 in the second equality. By this, we get

|c|2 =

Al
ρl(α)−−−→ · · · −−→ Bl ←−− · · · ρl(α)←−−− Al

ρl(α′)

� �ρl(α′)

...
...� �

Cl Cl� �
...

...

ρl(β̃′)

� �ρl(β̃′)

Al+k Al+k

ρl(β̃′)

 ρl(β̃′)

...
... 

Cl Cl 
...

...

ρl(α′)

 ρl(α′)

Al −−−→
ρl(α)

· · · −−→ Bl ←−− · · · ←−−−
ρl(α)

Al

= 1,

by Lemma 4.2. Q.E.D.

Now we have aξ = cbξ for all ξ by the Cauchy-Schwarz inequality. Next we claim

that c is real for the step (3).
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Lemma 5.5. We get c ∈ R.

Proof. Choose ξ so that aξ �= 0. By Proposition 2.4,

c ∈ R · εAl·Al+Al+j+k·Al+j+k−Al+k·Al+k−Al+j ·Al+j .

Choose η1, η2, ζ1, ζ2 so that

a =

Al
ζ1−−−−→ · · · −−−−→ C

η1

� �η2

...
...� �

Al+k −−−−→
ζ2

· · · −−−−→ C

is non-zero. We also set

b =

Al+j
ρj(ζ1)−−−−→ · · · −−−−→ C

ρj(η1)

� �ρj(η2)

...
...� �

Al+j+k −−−−→
ρj(ζ2)

· · · −−−−→ C

By invariance of the connections under ρ, we get a = b. On the other hand, if we

apply the above arguments to a and b, we get

1 =
a

b
∈ R · εAl·Al+Al+j+k·Al+j+k−Al+k·Al+k−Al+j ·Al+j .

This implies c ∈ R. Q.E.D.

Next we have to determine the sign of c. First we assume that Bl = C for all l.
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Lemma 5.6. We get c = 1 if Bl = C for all l.

Proof. We have aξ = cbξ, but the fact that the connections are invariant under ρ

and Lemma 5.3 imply bξ = aρ−j(ξ). This produces

aξ = caρ−j(ξ) = c2aρ−2j(ξ) = · · · = cNaρ−Nj(ξ) = cNaξ .

Choosing ξ so that aξ �= 0, we get cN = 1. Now N is odd by (1) of Assumption 4.3

and c is real by Lemma 5.5, thus we get c = 1. Q.E.D.

Finally we show c = 1, without assuming that Bl is the fixed point of ρ.

Lemma 5.7. We get c = 1.

Proof. Suppose

Al
ρl(α)−−−→ · · · −−→ Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl+j(α′)

...
...� �

Cl Cl+j� �
...

...

ρl(β̃′)

� �ρl+j(β̃′)

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k ←−− · · · ←−−−−−
ρl+k(β)

Al+j+k

= −1,

for some l, k, j, α, β, α′, β′. We will derive a contradiction.
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Choose a positive integer p large enough so that there exists a path from Bl to

C with length p. Set

K = {γ | s(γ) = Bl, |γ| = p} �= ∅.

Consider the following quantity.

(5.1)

∑
γ,γ′

Al
ρl(α)−−−→ · · · −−→ Bl

γ−−→ · γ←−− Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl+j(α′)

...
...� �

Cl Cl+j� �
...

...

ρl(β̃′)

� �ρl+j(β̃′)

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k −−−−→
ρk(γ′)

· ←−−−−
ρk(γ′)

Bl+k ←−− · · · ←−−−−−
ρl+k(β)

Al+j+k

,

where γ, γ′ are taken from the set K. We compute the value (4.1) in two ways.

On one hand, we take a sum in the way
∑

γ

∑
γ′ , then the value is

∑
γ(−1) =

−|K| by unitarity of the connections.
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On the other hand, we get γ′ = γ if the diagram has non-zero value, by Lemma

5.2. Thus the value of (5.1) is equal to

∑
γ

Al
ρl(α)−−−→ · · · −−→ Bl

γ−−→ · γ←−− Bl ←−− · · · ρl(β)←−−− Al+j

ρl(α′)

� �ρl+j(α′)

...
...� �

Cl Cl+j� �
...

...

ρl(β̃′)

� �ρl+j(β̃′)

Al+k −−−−−→
ρl+k(α)

· · · −−→ Bl+k −−−→
ρk(γ)

· ←−−−
ρk(γ)

Bl+k ←−− · · · ←−−−−−
ρl+k(β)

Al+j+k

.

We have |K| terms here and each term is ±1 by Lemmas 5.4 and 5.5. But the sum

must be −|K|, which means that all the terms must be −1. But among these |K|

terms, there exists a term for which r(γ) = C by definition of p. For such a term,

the value must be 1 by Lemma 5.6. This is a contradiction. Q.E.D.

Thus we have proved the following.

Theorem 5.8. The orbifold subfactor D0,∞ ⊂ D1,∞ defined in §4 has the higher

relative commutants (Dk,0)k under Assumption 4.3.

We end with three remarks.
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Remark 5.9. For automorphisms of a factor fixing a subfactor globally, P. Loi

introduced an invariant in [Li1], which is an action of the extended automorphism

on the higher relative commutants. He showed that an outer action of Z on an AFD

subfactor of type II1 with finite index and finite depth with his invariant trivial is

unique up to outer conjugacy. The result of the second author in [Ka] shows that

this kind of uniqueness fails for Z2 actions on subfactors of type A4n−3 because

Loi’s invariant is always trivial for subfactors of type An. Furthermore, we can

prove that our Z3 action above also has Loi’s invariant trivial. Indeed, Equality

(4.3) gives that the higher relative commutants for the subfactor C0,∞ ⊂ C1,∞ in

the double sequence at the beginning of §4 is spanned by the elements
∑N

k=0 ρk(σ),

where σ is any string with the starting vertex A0. The extended action of our ρ on

the Jones tower is exactly same as our original ρ, so it acts trivially on the higher

relative commutants. So our action changes (actually increases) the higher relative

commutants by making the simultaneous fixed point algebras (or crossed product

algebras) while it has Loi’s invariant trivial.

Remark 5.10. In [Li2, Lemma 4.2], P. Loi considered a symmetry of finite order

of a paragroup and a fixed point algebra under it and noticed that the higher

relative commutants are computed easily. In his work arising from a classification

of subfactors of type IIIλ, he considers only symmetries fixing ∗ of the paragroup.

But then a new paragroup obtained as a fixed point algebra has a symmetry moving

∗. Our symmetry for paragroups of the Hecke algebra subfactors of Wenzl moves ∗.

Thus our construction here can be regarded as the inverse direction of Loi’s work.

This inverse direction is more interesting and difficult because the flatness is not

automatically satisfied.
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Remark 5.11. So far, we have been unable to prove that (2) of Assumption 4.3

holds for odd N in general with some rather trivial exceptions. But with slight mod-

ification of the above arguments, we can prove flatness for the orbifold construction

for general odd prime N as follows.

In the construction of the double sequence Cjk, we used period N commuting

square sequences in the horizontal direction and period 2 sequences in the vertical

direction. But we have computed the paragroups for the Hecke algebra subfactors

of Wenzl in Theorem 3.5, so we can use the period 2 sequences in the both directions

for the double sequence Cjk. Then we lose the Yang-Baxter equation, but we have

a flatness for the original paragroup, so the following weaker version of Assumption

4.3 (2) is enough for the arguments in §4.

(2)′ The graph A(n)
0 has no non-trivial graph automorphism with order N fixing

∗.

If N is odd prime, then one can easily prove this (2)′ by induction, and we get

flatness for the orbifold construction in these cases, which produces several new

series of orbifold subfactors.
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