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Abstract

We survey a recent progress on algebraic quantum field theory in connection to
subfactor theory. We mainly concentrate on one-dimensional conformal quantum
field theory.

1 Introduction

Algebraic quantum field theory is an operator algebraic approach to quantum field theory.
Here we review methods of Haag-Kastler nets of operator algebras on a spacetime with
emphasis on recent progresses in low dimensions in connection to subfactor theory and
modular invariants.

In algebraic quantum field theory, we have a family of operator algebras parameterized
by regions in a certain spacetime. Each algebra represents a system of physical quantities
observable in the corresponding region. Representation theory of such a family of operator
algebras has turned out to be quite interesting mathematically. (See [24] for a general
theory of algebraic quantum field theory.) A natural “spacetime” for such a formulation is a
4-dimensional Minkowski space, but in this article, we will concentrate on one-dimensional
compactified “spacetime”, S1. (One way to get this situation naturally is making a tensor
product decomposition of a theory of 2-dimensional spacetime. Such a one-dimensional
theory is often called a chiral theory.) A one-dimensional theory has caught much attention
recently and provides a rich source of mathematical problems and insight.

2 Conformal nets and representation theory

Now our “spacetime” is one-dimensional circle S1 and a region in this spacetime is an
interval which means a non-empty, non-dense, open, and connected set in S1. We study
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a family of von Neumann algebras A(I) on a fixed Hilbert space H parameterized by
intervals I under the following set of axioms.

Axiom 2.1. For intervals I ⊂ J , we have A(I) ⊂ A(J).

This axiom is called isotony and means that we have more observable for a larger
region. Each algebra A(I) is called a local algebra.

Axiom 2.2. If two intervals I, J have no intersection, then we have xy = yx for all
operators x ∈ A(I), y ∈ A(J).

This axiom is called locality. In a 4-dimensional Minkowski space, the locality axiom
means that two space-like separated regions have no interactions since we cannot reach
one region from the other even with speed of light, and hence operators in the correspond-
ing two algebras commute with each other. In this one-dimensional setting, the natural
assumption for “space-like disjointness” is simply disjointness.

We also need to encode a role of spacetime symmetries. The next axiom is called
Möbius covariance or conformal covariance.

Axiom 2.3. We have a unitary representation Ug of PSL(2, R) on H with UgA(I)U∗
g =

A(gI) for g ∈ PSL(2, R) and each interval I, where PSL(2, R) acts on S1 by the Möbius
transformation.

We next have a positive energy condition. Note that the above action of PSL(2, R)
on S1 contains the rotation as a subgroup.

Axiom 2.4. The generator of the one-parameter automorphism subgroup of Ug given by
rotation is positive.

We further assume existence of a special vector called a vacuum vector Ω.

Axiom 2.5. We have a U-invariant unit vector Ω ∈ H.

The final axiom here is called irreducibility.

Axiom 2.6. The von Neumann algebra
∨

I A(I) generated by all A(I)’s is B(H).

Such a family of von Neumann algebras satisfying the above set of axioms is simply
called a net of von Neumann algebras and denoted by A. (The inclusion order on the set
of intervals is not directed, so the terminology net is not appropriate, strictly speaking,
but this terminology has been often used in literature.) The Haag duality, A(I ′) = A(I)′

now follows from these axioms, where I is an interval, I ′ is the interior of its complement,
and A(I)′ is the commutant of A(I), that is, {x ∈ B(H) | xy = yx, ∀y ∈ A(I)}. We also
have that the U-invariant vector is unique up to scalar. Each algebra A(I) is a type III1

factor, except for the trivial case A(I) = C for all I . So, a net of von Neumann algebra in
the above sense is also called a net of factors. See [7, 9, 18, 22, 23] for more explanations
on the axioms and proofs of these statements. Also, if one does not like compactification



S1, one can work on R instead. See the appendix of [32] for a relation between the two
formulations.

We next consider representations of such a family of von Neumann algebras together
with a “compatible” unitary representation of the Möbius group on different Hilbert spaces.
A representation π of a net A means we have a family of representations πI on a Hilbert
space K parameterized by intervals I on S1 such that πJ |A(I)= πI for I ⊂ J . Here we deal
with only the case where K is separable and then each πI is automatically normal and
unitarily equivalent to the identity representation of A(I) on the original Hilbert space H.
This property of unitary equivalence of πI is called localizability of π. As in [16, II, Section
5], we can construct the universal C∗-algebra C∗(A) from the net A. (Roughly speaking,
this is something like a union of A(I)’s, but the set of intervals on S1 is not directed, so we
cannot take an inductive limit simply, and we need to be more careful.) Since we have a
canonical embedding of A(I) into C∗(A), we regard A(I) as a subalgebra of C∗(A). One
can show that we have a bijective correspondence between representations of the net A
and those of the C∗-algebra C∗(A). By the Haag duality, each representation of the net
A is unitarily equivalent to σ0 · ρ, where ρ is an endomorphism of C∗(A) and σ0 is the
representation of C∗(A) corresponding to the identity representation of the net A on the
original Hilbert space H. See the appendix of [32] for handling of representations of a net
on R along the line of the DHR analysis [13]. In the following, we will often consider DHR
endomorphisms rather than representations of a net. Note that a net of von Neumann
algebras on R is indeed a net in the usual sense and thus we can make an inductive limit
C∗-algebra of local algebras. Then each representation of a net is realized as a special
endomorphism, called a DHR endomorphism, of the inductive limit C∗-algebra.

We would like to pursue an analogy between the representation theory of a net of
von Neumann algebras as above and that of a compact group. It turns out that we can
define a notion of (statistical) dimension of a representation which takes a value in [1,∞],
possibly a non-integer, and also a notion of tensor product through a composition of endo-
morphisms. (Note that a tensor product of representations does not make sense literally,
so we define a tensor product of representations as composition of DHR endomorphisms.)
In the following, we consider only representations with finite statistical dimensions. One
way to see this analogy more concretely is to fix an interval I and realize representations
as endomorphisms of a factor A(I). Then the statistical dimension of an endomorphism
ρ is simply the square root of the Jones-Kosaki index [A(I) : ρ(A(I))] [27, 34]. The ten-
sor product operation is given by composition of endomorphisms on a single factor A(I).
We have a notion of conjugate endomorphisms as in [36] which correspond to that of
contragredient representations. We also have notions such as direct sums and irreducible
decompositions. Irreducibility is defined as ρ(A(I))′ ∩ A(I) = C, for example. A uni-
tary equivalence class of a representation is called a superselection sector and a category
of representations has a strong formal similarity to that of unitary representations of a
compact group. Actually, if a spacetime dimension is four, the category of representations
of a net is equivalent to that of representations of a compact group, and we can recover
the compact group through abstract duality [14]. In this case, the statistical dimensions
are integers, in particular. In our current one-dimensional spacetime S1, however, the



statistical dimensions are not necessarily integers, and we have some category not arising
from a compact group, in general.

One property of a category of unitary representations of a compact group is that for
two representations π1 and π2, two tensor products π1⊗π2 and π2⊗π1 are trivially unitarily
equivalent. The corresponding commutative property in a category of endomorphisms is
that we have a unitary u ∈ A(I) with Ad(u)·ρ1·ρ2 = ρ2·ρ1. Since ρ1, ρ2 are endomorphisms
of an infinite algebra, we have no reason to expect that the compositions commute, even up
to unitary equivalence, but it turns out that they do have this commutativity up to unitary
equivalence, due to locality. In the case of higher spacetime dimensions, this commutativity
holds in a rather simple way and this unitary u corresponds to a permutation of two
objects ρ1, ρ2, but for a net on S1, we have more non-trivial commutativity giving a braid
relation for the two objects ρ1, ρ2. In this way, the category of representations of a net of
von Neumann algebras becomes a braided tensor category as in [16]. See [45] for a precise
definition and related properties of braided tensor categories. (Also see [42] for a definition
of a braiding in the setting of endomorphisms of a von Neumann algebra.)

3 Complete rationality

As we have seen above, we have a braided tensor category arising from representations
of a net of von Neumann algebras. In connection to quantum groups and 3-dimensional
topological quantum field theory, a braided tensor category with finitely many irreducible
objects has caught much attention. Such a category is called rational. Furthermore,
a braiding on a rational tensor category produces two finite-dimensional scalar-valued
matrices, S- and T -matrices. (See [42] for their operator algebraic definition in the setting
of endomorphisms.) The T -matrix is always unitary, but S-matrix can be non-invertible
in general. Its invertibility is an important property, particularly in connection to 3-
dimensional topological quantum field theory, and it is often very difficult to prove this
invertibility for a concrete category arising from, say, quantum groups or vertex operator
algebras. When we have this invertibility, in addition to rationality, we say that the
tensor category is modular, since we then have a unitary representation of a modular
group SL(2, Z). (See [1, 45] for this invertibility and related results.)

So in an operator algebraic approach to study of modular tensor categories, it is im-
portant to know when the tensor category of representations of a net becomes modular. In
[32], we have proposed one set of conditions and proved that it indeed implies modularity
of the tensor categories. We now give the set of axioms and explanations.

We have three more axioms in addition to those in the previous section. The first one
below is called strong additivity.

Axiom 3.1. Let I be an interval and p a point on it. Let I1, I2 be two connected compo-
nents of I � {p}. Then we have A(I) = A(I1) ∨A(I2).

The next one is called a split property. It is known that this holds if Tr(e−βL0) < ∞
for all β > 0, where L0 is the conformal Hamiltonian. (See [8, 11].)



Axiom 3.2. Let I, J be two intervals with two disjoint closures. Then A(I) ∨ A(J) is
naturally isomorphic to A(I) ⊗A(J).

The next one involves a notion of µ-index as follows.

Definition 3.3. Split the circle to four intervals I1, I2, I3, I4 in the counterclockwise order.
The µ-index of the net A, µA, is defined to be the Jones-Kosaki index of the subfactor
A(I1) ∨A(I3) ⊂ (A(I2) ∨A(I4))

′.

It turns out that this µ-index is independent of the choice of the four intervals. (See the
book [15] for general theory on subfactors.) Then the final axiom for complete rationality
is the following.

Axiom 3.4. The µ-index of the net A is finite.

The main result in [32] is that under the set of these axioms, we have modularity of
the tensor category of representations of the net A. In particular, this tensor category
is rational and this is why we use the terminology “complete rationality”. It has been
also proved in [32] that the subfactor in Definition 3.3 is the Longo-Rehren subfactor as
in [39, Proposition 4.10] arising from the system of irreducible DHR endomorphisms of
the net A and the index of this subfactor measures the size of this tensor category. (See
[25, 40] for more on the Longo-Rehren subfactors.) The SU(N)k net of factors on S1

constructed in [46] is completely rational by the results of [46, 49]. (The structure of the
tensor categories of the DHR endomorphisms of these nets is the same as those arising from
the WZW SU(N)k models. See the book [12] on WZW models.) Coset nets and orbifold
nets have been studied in the context of completely rational nets in [50, 51, 52, 53] and
several interesting results including invariants of 3-manifolds have been obtained. Longo
[38] has proved that if we have a net of subfactors {A(I) ⊂ B(I)} with finite index and
one of the two is completely rational, so is the other. (See the next section for more on
nets of subfactors.)

4 α-induction and modular invariants

In the usual representation theory, we have a machinery of induction and restriction for
a group G and its subgroup H. For nets of subfactors {A(I) ⊂ B(I)} on the circle, we
have a similar machinery. A general theory of nets of subfactors was started in [39] and a
method of induction and restriction was also proposed there in Proposition 3.9 based on
an old suggestion of Roberts [44]. This machinery was extensively studied by Xu [47, 48]
in the setting of conformal inclusions and several general useful properties and interesting
examples have been obtained. This has been further studied in [2, 3, 4, 5, 6] under the
name of α-induction.

Before going into this theory, we make one remark. In the usual subfactor theory
on N ⊂ M as in [15], the roles of N and M are symmetric, since we can perform the
Jones basic construction [27], but in the theory of nets of subfactors, the roles of the two
nets are not symmetric. For {A(I) ⊂ B(I)}, fix one interval I . Longo’s dual canonical



endomorphism [36] for the subfactor A(I) ⊂ B(I) gives a DHR endomorphism of the net
A, but the canonical endomorphism of this subfactor is not a DHR endomorphism of the
net B. We cannot make a basic construction for nets of subfactors.

For a DHR endomorphism λ of a net A and a fixed interval I , we may assume that λ
is localized on I , that is, λ gives an endomorphism A(I). Then using the formula

α±
λ = γ−1 · Ad(ε±(λ, γ|A(I))) · λ · γ

in [39, Proposition 3.9], where γ is a canonical endomorphism [36] of the subfactor A(I) ⊂
B(I) and ε(λ, γ|A(I)) is the braiding on the tensor category of DHR endomorphisms of
the net A, we have an endomorphism α±

λ of B(I). These endomorphisms are not DHR
endomorphisms of the net B in general, but it turns out that the intersection of the
irreducible endomorphisms appearing in the decompositions of α+

λ ’s and those of α−
µ ’s is

exactly the system of irreducible DHR endomorphisms of the net B. Note that the system
of the irreducible DHR endomorphisms of the net B is smaller than that of the net A and
the ratio of the size is given by the square of the index [B : A] by [32, Proposition 24].

For irreducible DHR endomorphisms λ, µ of the net A, we set Zλµ = dim Hom(α+
λ , α−

µ ).
Then it has been proved in [4, Theorem 5.7] that this matrix Z commutes with the unitary
representation of the SL(2, Z) arising from the braiding on the system of irreducible DHR
endomorphisms of the net A. Thus, this matrix is a modular invariant in the sense that
Zλµ ∈ N, ZS = SZ, ZT = TZ, and Z00 = Z00, where the index 0 means the vacuum
representation. (Actually, the results in [4] hold in a much more general situation where
we have just an abstract braiding in the sense of [42].) Several results have been obtained
about the categorical structures of systems of endomorphisms arising from α-induction in
[4, 5, 6].

Around the same time as Longo-Rehren [39], Ocneanu [41, Part 5] introduced a graph-
ical method to study Goodman-de la Harpe-Jones subfactors [21, Section 4.5] arising from
A-D-E Dynkin diagrams. It has been shown in [4, Theorem 5.3] that this method is es-
sentially the same as α-induction. The results on Goodman-de la Harpe-Jones subfactors
in [29] has given a prototype for such studies.

For a given braiding, it is easy to see that the number of possible modular invariant
matrices Z is finite. In a natural concrete example, this finite number is often very small
such as 1, 2, and 3. In the case of the SU(2)k WZW-models, all the modular invariant
matrices have been classified in [10, 28] and they are labeled with A-D-E Dynkin diagrams.
(See [19] and references there for recent results on classification of modular invariants.) It
has been shown in [2, 4, 5] that all of them arise from subfactors with α-induction in the
above way.

5 Central charge and classification

In this last section, we replace the Möbius group with the orientation preserving diffeo-
morphism group Diff(S1), an infinite dimensional Lie group, as the symmetry group of the
“spacetime”. We then need some modifications of the axioms as follows. We now assume
that we have a projective unitary representation of Diff(S1) and the covariance axiom



holds with respect to this representation, but we assume that invariance of the vacuum
vector only for the Möbius group, a subgroup of Diff(S1). (It is impossible that the vacuum
vector is invariant under the whole Diff(S1).) Furthermore, we assume that if g ∈ Diff(S1)
acts trivially on an interval I , then U(g) implements the identity automorphism of A(I).

The corresponding infinite dimensional Lie algebra to Diff(S1) is the celebrated Vira-
soro algebra with relations

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm,−n,

where m, n ∈ Z, and and [Ln, c] = 0. The number c ∈ C is called a central charge. If
c < 1, then the value of c must belong to the set

{1 − 6/m(m + 1) | m = 2, 3, 4, . . . }

and all these values are realized by [17, 20]. For each admissible value of c, we have a
unique irreducible, projective unitary representation U , with positive energy, of Diff(S1)
such that the lowest eigenvalue of the conformal Hamiltonian L0 is 0. This is called the
vacuum representation with central charge c. Then we define the Virasoro net Virc(I) =
U(Diff(I))′′, where Diff(I) is the group of diffeomorphisms S1 which fix the points outside
of I . We call this Virc(I) the Virasoro net with central charge c. From a viewpoint of the
coset construction of unitary representations of the Virasoro algebras with central charge
less than 1 by Goddard-Kent-Olive [20], it is natural to expect that the Virasoro net with
central charge c = 1−6/m(m+1) coincides with the coset model arising from the diagonal
embedding SU(2)m−1 ⊂ SU(2)m−2 × SU(2)1 as in Xu [50]. One can prove that this is
indeed the case. (See [31] for more details.) Then Longo’s results in particular implies
[38] that the Virasoro net Virc with c < 1 is completely rational. (Strong additivity is a
part of the axioms for complete rationality. Strong additivity of Virc was claimed in [35],
but the proof there contains a serious gap.)

Now we would like to classify diffeomorphism covariant nets on S1. For such a net
A, the projective unitary representation of Diff(S1) gives a subnet of A in the same way
as above. Furthermore, we can prove that this subnet is irreducible, that is, we have
Virc(I)′ ∩ A(I) = C for an interval I . Because the Virasoro net is completely rational, a
result in [26] implies that the inclusion Virc(I) ⊂ A(I) has a finite index. In this way, the
classification problem of such nets is reduced to the classification problem of irreducible
extensions of the Virasoro nets with c < 1. We can now apply the method of α-induction
and modular invariants in the above section.

The S- and T -matrices arising from the braiding of the category of DHR endomor-
phisms of the Virasoro net Virc with c < 1 is explicitly known. (See [12], for example.)
The modular invariant matrices for this have been explicitly classified in [10]. They are
labeled with pairs of A-D-E Dynkin diagrams with difference of their Coxeter numbers
being one. So the operator algebraic problems are existence and uniqueness of nets of
factors corresponding to each modular invariant. This problem is reduced to classification
problem of Q-systems in the sense of [37] for each modular invariant. As in [31], the
problems of existence and uniqueness can be solved affirmatively for each of the so-called



type I modular invariants in [10] and we do not have any net corresponding to the type II
modular invariants. In this way, diffeomorphism covariants nets of factors on S1 are in a
bijective correspondence to pairs of A-D2n-E6,8 Dynkin diagrams with difference of their
Coxeter numbers being one.

Note that a general classification problem of conformal nets on S1 seems very difficult,
but a relative version of this classification problem is more tractable. That is, for a
given net A, we would like to classify all the irreducible extensions B of A. For a given
completely rational net A, we have only finitely many such B, and a general strategy for
classification is just as above; first we classify (type I) modular invariant matrices, and
then solve existence and uniqueness problems of Q-systems for each modular invariant.
Kirillov-Ostrik [33] considers the same type of classification problems from a different
context. The results in [33] can be translated to a classification of irreducible extensions
of the SU(2)k nets. Note that the tensor category of representation of a larger net is
smaller. So considering extensions of a given net corresponds to considering subsystems
of a given category.
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