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Abstract

We survey the current status of Ocneanu’s paragroup theory and its relation
to topological quantum field theory.

1 Introduction

Since V. F. R. Jones initiated the subfactor theory in [16], we have seen many new
combinatorial structures arising from subfactors. It is Ocneanu’s paragroup theory
[23] that describes the combinatorial structures and relates the subfactor theory to

other new fields such as the quantum group theory, rational conformal field theory,
topological quantum field theory, etc. We see a great deal of similarity among the
combinatorial structures of these theories, but we also have subtle differences. We
now survey the current status of the paragroup theory and its relations to the other

topics.

2 General theory of paragroups

We start with a subfactor N ⊂ M of type II1 with finite Jones index. (In this paper,
we always assume these conditions when we say a “subfactor” N ⊂ M .) The basic
construction of Jones [16] produces the increasing sequence of II1 factors, the Jones
tower:

N ⊂ M ⊂ M1 ⊂ M2 ⊂ M3 ⊂ · · ·
We have a double sequence of finite dimensional algebras {M ′

k ∩Ml}−1≤k≤l called
the higher relative commutants as an invariant of the subfactor, where we have set

M0 = M and M−1 = N .
This double sequence is known to be a complete invariant for a subfactor of the

hyperfinite II1 factor with finite index and strong amenability by a deep theorem
of Popa [33]. A paragroup is an algebraic system introduced by Ocneanu [23] to

characterize this double sequence in a combinatorial way, when we assume the finite
depth condition for a subfactor. (We will give the definition for the finite depth
condition later. It is a stronger condition than the strong amenability.) A finite
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group gives an example of a paragroup, and a general paragroup is regarded as a

generalization, or a quantization, of a notion of a finite group. (This quantization is
different from that for quantum groups. See the next Section.)

Ocneanu has two equivalent axiomatizations of paragroups as in [23], [25]. We
explain the approach in [25] as follows. (See [11, Chapters 9–12] for details of the

both approaches.)
From a subfactor N ⊂ M of type II1 with finite index, we get a bimodule

NL2(M)M . Using the relative tensor product of Connes, we get finite tensor powers

· · · ⊗N L2(M) ⊗M L2(M) ⊗N L2(M) ⊗M · · ·

and make irreducible decompositions. We get four kinds of bimodules; N -N , N -M ,

M-N , and M-M . The finite depth assumption means that we get only finitely many
isomorphism classes of bimodules in this procedure. In this Section, we assume that
M is hyperfinite and N ⊂ M is of finite depth. If we make a relative tensor product of
two bimodules arising in this procedure, we get a direct sum of bimodules also arising

in the same way. We call such a set of (isomorphism classes of) bimodules a system
of bimodules arising from the subfactor. The rule of irreducible decompositions of
relative tensor products of two bimodules is called a fusion rule of the system. This
is an analogue of the decomposition rule of tensor products of two representations

of a compact group. A bimodule map is called an intertwiner as an analogue of an
intertwiner of representations. Associativity of the relative tensor product gives two
ways of representing X ⊗ Y ⊗ Z and the compatibility of the two ways produces

so-called quantum 6j-symbols by composing intertwiners, as a direct analogue of
6j-symbols for representations of a compact group. The fusion rule and quantum 6j-
symbols completely determine the system of bimodules and by axiomatizing them,
we get a paragroup. In this way, a paragroup is a combination of a fusion rule (of four

kinds of bimodules) and an equivalence class of quantum 6j-symbols on it. (See [11,
Chapter 12] for exact definitions of quantum 6j-symbols, their equivalence relation,
etc.) That is, in an abstract formulation, we have a finite set of “irreducible” objects
and we have an operation called a “tensor product”. We also have an irreducible

decomposition of a tensor product of two objects. We have intertwiners between
objects and require that self-intertwiners on an irreducible object give a complex
number. Then we can define 6j-symbols and we require them to satisfy the axioms
called unitarity, tetrahedral symmetry, and pentagonal relations. In this way, we

have a categorical axiomatization and such a system is sometimes called a fusion
category. Two important points of paragroups in this categorical formulation are
that the “tensor product” is not commutative in general and that each object has a

positive “dimension”.
For a subfactor N ⊂ M , we consider the two graphs defined as follows. We label

the vertices with (the isomorphism classes of) the four kinds of bimodules arising from
the subfactor as above. We connect an N -N bimodule X and an N -M bimodule Y

with edges of multiplicity dim Hom(NX⊗N L2(M)M , Y ), where Hom means the space
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of the N -M bimodule maps. We also connect an M-M bimodule X and an M-N

bimodule Y with edges of multiplicity dim Hom(MX⊗M L2(M)N , Y ). on this way, we
get two graphs; one has vertices labelled with N -N bimodules and N -M bimodules
and the other with M-M bimodules and M-N bimodules. We call these graphs the
principal graph and the dual principal graph of the subfactor N ⊂ M respectively.

These two graphs give only partial data of the paragroup of N ⊂ M , but in many
concrete cases these graphs determine the paragroup (almost) uniquely, so we often
draw these graphs to represent a paragroup.

When the Jones index is less than or equal to four, the (dual) principal graphs

must be one of the (extended) Dynkin diagrams of type A, D, or E. A complete
classification of the corresponding paragroups has been given by Ocneanu, Popa, and
various people. (See [11, Chapter 11]. Consideration of fusion rules is quite useful as

in [15].)
Ocneanu has recently proved the following theorem on a general structure of

paragroups and presented his proof in [30].

Theorem 2.1 For a given fusion rule, we have only finitely many equivalence classes
of quantum 6j-symbols.

For a fixed fusion rule, quantum 6j-symbols are just finite sets of linear maps on
finite dimensional Hilbert spaces satisfying some axioms. It is easy to see that the

set of such linear maps is compact. Ocneanu works on this compact space to prove
the above theorem. The following is Ocneanu’s corollary to the above theorem. (See
[19] for more explanations.)

Corollary 2.2 For any finite graph, we have only finitely many paragroups having
this graph as a principal graph.

3 Known examples

In this section, we survey known constructions of paragroups/subfactors. First we
list constructions giving “basic” examples and then describe methods to construct
new examples from given ones.

The following three tools have been used for constructing subfactors of finite index

and finite depth.

• Finite groups/finite dimensional Hopf C∗-algebras

• Quantum groups and rational conformal field theory

• Exceptional paragroups

We also have a method of construction using another mathematical object such as
loop groups as in [46], [54], [55] but it gives the same paragroups as the ones arising

from the second in the above list, so we have not listed such a construction separately.
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The first case just means a subfactor given as R ⊂ R × H, where H is a finite

group or a finite dimensional Hopf C∗-algebra acting on R freely. (Note that we
always have such an action on the hyperfinite II1 factor for any finite group or a
finite dimensional Hopf C∗-algebra.) This construction has been known for a long
time, and there is nothing mysterious in it today.

The construction of subfactors from quantum groups has been studied extensively
by Wenzl [47], [48], [49]. These subfactors arise from quantum groups at roots of unity
of the form q = exp πi/n. From the viewpoint of the paragroup theory based on quan-
tum 6j-symbols, the easiest way to understand such a construction is a categorical

method. As noticed in [6], we can get a paragroup from another categorical structure
arising a from Wess-Zumino-Witten model or a quantum group. (Also see [44]. See-
ing this kind of construction, Ocneanu has noticed the above-mentioned equivalence

of the two axiomatizations of paragroups.)
We can extend this construction to the orbifold subfactors in [8], [18], [51], the

Goodman-de la Harpe-Jones subfactors and their generalizations in [12], [52], and
subfactors corresponding to the Dynkin diagrams E6, E8 (see [53]) by working on finer

mathematical structures. For this purpose, it is better to use rational conformal field
theory rather than quantum groups. See [11, Chapter 13]. (From our combinatorial
viewpoints, these two mathematical structures are quite similar, though they are
originally different.)

From today’s viewpoint, the above two constructions are not very surprising any
more in the sense that these constructions do not produce previously unknown math-
ematical structures. So it would be desirable to find subfactors not arising from such
constructions. Haagerup has tried to find such subfactors.

The above mentioned classification of subfactors with index less than or equal to
four has been done by combinatorial arguments. Haagerup further made this kind
of combinatorial studies in detail and has obtained a list of candidates of (dual)

principal graphs for subfactors with index in the interval (4, 3 +
√

3] that might be
realized from subfactors in [13]. His list has the graph A∞ as a “generic case” and
two series of pairs of finite graphs and one pair of finite graphs. It was not clear at all
which graphs of his list are indeed realized as a principal graph of a subfactor, except

for the pair of finite graphs for the index value (5 +
√

13)/2 for which he announced
that it is indeed realized from a subfactor of the hyperfinite II1 factor. This is the
smallest possible index value above four for subfactors with finite depth. This pair
of the principal and dual principal graphs is given as in Fig. 1. The two copies of

the principal graph and the two copies of the dual principal graphs are connected as
in Fig. 2, where the top four vertices are naturally identified with the bottom four
vertices. This diagram gives the Bratteli diagram of the canonical commuting square
of the subfactor in the sense of Popa [31]. (Haagerup’s proof of the realization has

been recently written in [1].)
The realization of the other graphs from a subfactor had been an open problem

for some years, but we recently see some progress on this problem. Bisch has proved
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Figure 1. The (dual) principal graphs of the Haagerup subfactor
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that one series of the graphs is not realized at all in [3] by showing inconsistency of

the fusion rules. Asaeda and Haagerup have proved in [1] that one exceptional pair
of the graphs in the Haagerup list is indeed realized. The graphs are listed in Fig. 3.

An outline of their method of the realization is as follows. Assuming that the
graphs are indeed the (dual) principal of a subfactor, we get a partial information

on the fusion rule. This partial information often (but not always) determines the
entire fusion rule of the subfactor, and this is the case for the Haagerup and Asaeda-
Haagerup subfactors. Then by reversing the computations, we can often prove that a
few identities for the fusion rules conversely determine the (dual) principal graphs as

desired. In the case of the Haagerup and Asaeda-Haagerup subfactors, it turns out

* ∗

Figure 3. The (dual) principal graphs of the Asaeda-Haagerup subfactor
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that verifying one identity for the fusion rules is enough in each case. This verification

involves relative tensor products of bimodules, that is, infinite dimensional Hilbert
spaces. Asaeda and Haagerup [1] have established a method to reduce this infinite
dimensional problem to computations of a finite number of finite dimensional unitary
matrices. This is the method of open string bimodules which generalizes Ocneanu’s

construction [23] and Sato’s generalization [39]. (This is similar to Ocneanu’s work
in [29], but there is a subtle difference for the equivalence relation of connections
in terms of gauge choices.) Even after this reduction, the computations are highly
complicated, but they managed to complete the computations as in [1]. This method

of open string bimodules will be very useful in the future studies of subfactors.
At present, these two examples of Haagerup and Asaeda-Haagerup are the only

known genuine exceptional subfactors that do not arise from finite or quantum groups.

Note that these have no deformation parameter q. (We have no unified definition of
quantum groups. Here we mean by a “quantum group” a certain Hopf algebra arising
as a deformation of a Lie algebra.)

In the original axiomatization of a paragroup, this kind of realization problem is

reduced to numerical identities. In Ocneanu’s terminology, this is a flatness prob-
lem of a bi-unitary connection. (See [11, Chapter 11] for a general theory.) These
numerical identities are extremely complicated and hard to verify, but in some cases
approximate computations on a computer is possible. Ikeda has made such computa-

tions and predicted the existence of the above-mentioned Asaeda-Haagerup subfactor
in [14]. He further made an approximate verification of the flatness for the second
pair of the graphs of the last series in the Haagerup list, as in Fig. 4, and found that
the identities are “almost” valid. (The first pair of the graphs of this last series is

for the Haagerup subfactor of index (5 +
√

13)/2 as in Fig. 1.) We, however, still do
not have a rigorous proof of the realization of these graphs in Fig. 4. Since the first
pair of graphs of the series is realized and the second is very “likely” to be realized,

we expect that all of the series are indeed realized, but no concrete evidence has
been obtained. This series will be very interesting from the viewpoint of topological
invariants in three-dimension which we will explain in the last section.

From these examples, we expect that we would have more and more exotic sub-

factors not arising from quantum groups, if we go beyond the above index range
(4, 3 +

√
3), but the combinatorial problems become exponentially difficult, and no

concrete results have been known.
Next, we have the following method to produce new subfactors from given ones.

• Tensor product

• Intermediate subfactor

• Composition

• Asymptotic inclusion
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Figure 4. A candidate of the (dual) principal graphs by Haagerup

The tensor product construction produces N ⊗ P ⊂ M ⊗ Q from two subfactors
N ⊂ M and P ⊂ Q. The Jones indices are multiplied and we can say this construction
gives a direct product of two paragroups. The resulting subfactor is of finite depth if

and only if so are the both subfactors. Nothing is mysterious in this construction.
The next construction produces N ⊂ R, R ⊂ M from a subfactor N ⊂ M . Bisch

[2] has shown that if we have a finite depth for N ⊂ M , then we automatically have
a finite depth for N ⊂ R, R ⊂ M . A criterion for existence of such an R has been

given in [2], [24]. If we start with a subfactor N ⊂ N × G = M , where G is a finite
group acting on N freely, then all the intermediate factors R are of the form N ×H
where H is a subgroup of G. Then as intermediate subfactors, we get N ⊂ N × H
and N ×H ⊂ N ×G. If we identify the paragroup of the subfactor N ⊂ N ×G with

the group G, these two subfactors give paragroups corresponding to the subgroup
H and the quotient G/H. For a general subfactor N ⊂ M , we have no reason to
distinguish the classes of N ⊂ R and R ⊂ M , which means, roughly speaking, we

have no distinction of a subsystem and a quotient for paragroups.
The composition of subfactors is a converse construction to the above. That is,

from N ⊂ M and M ⊂ R, we get N ⊂ R. Note that even if we fix the isomorphism
classes of N ⊂ M and M ⊂ R, that of N ⊂ R is not uniquely determined. By

controlling the relation of the original two subfactors, one can construct some subtle
examples as in [4]. In a “generic” case, even when N ⊂ M and M ⊂ R are of finite
depth, we would get an infinite depth for N ⊂ R. In such a case, the paragroup of
N ⊂ R is a free product of the two paragroups of N ⊂ M and M ⊂ R in some sense

as in [5].
The last one, the asymptotic inclusion, has been introduced by Ocneanu [23],

[24]. From a subfactor N ⊂ M of the hyperfinite II1 factor with finite index and
finite depth, this construction produces a new subfactor M ∨ (M ′ ∩ M∞) ⊂ M∞,

where M∞ is the weak clusre of the union of the Jones tower with respect to the
trace. This new inclusion has finite index if and only if the original inclusion is of
finite depth. This construction is related to topological quantum field theory and it

gives a paragroup analogue of the quantum double construction of Drinfel′d [7]. See
[10], [11, Chapters 12–13], [21], [22] for more on asymptotic inclusions.

The paragroup of the asymptotic inclusion is dual to that of the central sequence
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Figure 5.

subfactor Nω ∩M ′ ⊂ Mω, where ω is a free ultrafilter over the positive integers. (We
say that the paragroup of M ⊂ M1 is dual to that of N ⊂ M .) See [11, Chapter 15],
[20] for more on central sequence subfactors.

4 Infinite depth case

In this section, we discuss what is known for subfactors of infinite depth. S. Popa

[33] has proved that if a subfactor is strongly amenable, then it is “recovered” from
its higher relative commutants. He has obtained various characterization of strong
amenability in [33] (also see [35], [36]) and the abstract theory for strong amenability
has made much advance due to his series of work. We, however, do not have many

“natural” examples of strongly amenable subfactors without finite depth, except for
those arising from group actions such as “locally trivial subfactors” or those in [4],
[45].

As mentioned above, Haagerup [13] has shown a list of candidates of (dual) prin-

cipal graphs for the index range (4, 3 +
√

3] by complicated and subtle combinatorial
arguments. His work, in particular, implies that if the index value is between 4 and
(5 +

√
13)/2 = 4.302 · · ·, then the principal graph must be A∞. Haagerup-Schou [41]

and Ocneanu have constructed many subfactors of the hyperfinite II1 factors with
trivial relative commutants with indices in this range using bi-unitary connections
on finite graphs. In this way, the Jones index we get is the square of the Perron-
Frobenius eigenvalue of the graphs we use. Then a result in the graph theory implies

that the smallest index value above four we can construct in this way is 4.026 · · ·,
even if we allow infinite graphs. (See also Appendix I of [12].) This value is the square
of the Perron-Frobenius eigenvalue of the graph in Fig. 5. Ocneanu’s construction of
a subfactor with trivial relative commutant for this index value based on the graph

in Fig. 5 is described in [41]. By the above remark, this subfactor has A∞ as (dual)
principal graphs.

Popa has also proved that any value bigger than 4 can be realized as a Jones
index of some subfactor with trivial relative commutant of a II1 factor which is not

hyperfinite in [32]. Thus, if we drop the hyperfiniteness, we have a complete answer
of possible values of the Jones index of general subfactors with trivial relative com-
mutant, but the problem of the range of the possible Jones index values of subfactors

of the hyperfinite II1 factor with trivial relative commutant is still open.
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5 Relation to topological quantum field theory

It was the discovery of the Jones polynomial [17] that has connected the theory
of operator algebras to low dimensional topology. Witten [50] has formulated 3-
dimensional topological quantum field theory, in the sense of Atiyah, based on the

Jones polynomial.
There have been several methods to construct 3-dimensional topological quantum

field theory rigorously from a set of combinatorial data, but from the viewpoint of the

paragroup theory, the following two are the most important. One is the construction
of Turaev-Viro [43] using triangulation and the other is the one of Reshetikhin-Turaev
[37] using surgery. (In these constructions, we regard a compact 3-manifold is made of
a finite number of tetrahedra or with a Dehn surgery on a link. We define a complex

number for a closed manifold using the triangulation or a link and then prove that
the number does not depend on a particular triangulation or a link. See [42] for a
general theory in detail.)

It was Ocneanu who realized these constructions can be applied with combina-

torial data arising from a paragroup. That is, we can use the quantum 6j-symbols
arising from subfactors with finite depth for the Turaev-Viro method and the braid-
ing arising from the asymptotic inclusion of a subfactor with finite depth for the
Reshetikhin-Turaev method. Ocneanu has presented his theory in [25], [26], [27],

[28]. (Also see [9], [10] [11, Chapter 12].) It seems that the Turaev-Viro type topo-
logical quantum field theory arising from the quantum 6j-symbols of N ⊂ M is
identical to the Reshetikhin-Turaev type topological quantum field theory arising

from the natural braiding on the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞, but
this has not been proved yet.

It is also an interesting problem to define a topological quantum field theory from
subfactors with infinite depth. Amenability is expected to play an important role

here.
Another important notion connected to topological quantum field theory is equiv-

alence of systems of bimodules as defined in [25]. We say that the systems of N -N
bimodules and those of M-M bimodules arising from a subfactor N ⊂ M with finite

depth are equivalent. Based on this, Sato [40] has defined an equivalence for subfac-
tors and studied its relation to commuting squares in [38], [39], [40]. Ocneanu [25]
has noticed that equivalent subfactors give the same Turaev-Viro type topological
quantum field theory. (See [9], [11, Chapter 12].) It is an interesting open problem to

determine whether two subfactors producing the same Turaev-Viro type topological
quantum field theory are equivalent or not. We expect that the answer would be
affirmative.
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