代数学コロキウム
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
過去の記録
2012年04月11日(水)
17:30-18:30 数理科学研究科棟(駒場) 056号室
Damian Rossler 氏 (CNRS, Universite de Toulouse)
Around the Mordell-Lang conjecture in positive characteristic (ENGLISH)
Damian Rossler 氏 (CNRS, Universite de Toulouse)
Around the Mordell-Lang conjecture in positive characteristic (ENGLISH)
[ 講演概要 ]
Let V be a subvariety of an abelian variety A over C and let G\\subseteq A(C) be a subgroup. The classical Mordell-Lang conjecture predicts that if V is of general type and G\\otimesQ is finite dimensional, then V\\cap G is not Zariski dense in V. This statement contains the Mordell conjecture as well as the Manin-Mumford conjecture (for curves). The positive characteristic analog of the Mordell-Lang conjecture makes sense, when A is supposed to have no subquotient, which is defined over a finite field. This positive characteristic analog was proven in 1996 by E. Hrushovski using model-theoretic methods. We shall discuss the prehistory and context of this proof. We shall also discuss the proof (due to the speaker) of the fact that in positive characteristic, the Manin-Mumford conjecture implies the Mordell-Lang conjecture (whereas this seems far from true in characteristic 0).
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
Let V be a subvariety of an abelian variety A over C and let G\\subseteq A(C) be a subgroup. The classical Mordell-Lang conjecture predicts that if V is of general type and G\\otimesQ is finite dimensional, then V\\cap G is not Zariski dense in V. This statement contains the Mordell conjecture as well as the Manin-Mumford conjecture (for curves). The positive characteristic analog of the Mordell-Lang conjecture makes sense, when A is supposed to have no subquotient, which is defined over a finite field. This positive characteristic analog was proven in 1996 by E. Hrushovski using model-theoretic methods. We shall discuss the prehistory and context of this proof. We shall also discuss the proof (due to the speaker) of the fact that in positive characteristic, the Manin-Mumford conjecture implies the Mordell-Lang conjecture (whereas this seems far from true in characteristic 0).
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2012年02月22日(水)
18:00-19:00 数理科学研究科棟(駒場) 056号室
望月拓郎 氏 (京都大学数理解析研究所)
Twistor $D$-module and harmonic bundle (ENGLISH)
望月拓郎 氏 (京都大学数理解析研究所)
Twistor $D$-module and harmonic bundle (ENGLISH)
[ 講演概要 ]
Abstract:
We shall overview the theory of twistor $D$-modules and
harmonic bundles. I am planning to survey the following topics,
motivated by the Hard Lefschetz Theorem for semisimple holonomic
$D$-modules:
1. What is a twistor $D$-module?
2. Local structure of meromorphic flat bundles
3. Wild harmonic bundles from local and global viewpoints
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
Abstract:
We shall overview the theory of twistor $D$-modules and
harmonic bundles. I am planning to survey the following topics,
motivated by the Hard Lefschetz Theorem for semisimple holonomic
$D$-modules:
1. What is a twistor $D$-module?
2. Local structure of meromorphic flat bundles
3. Wild harmonic bundles from local and global viewpoints
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2012年01月12日(木)
18:15-19:15 数理科学研究科棟(駒場) 056号室
Toby Gee 氏 (Imperial College London)
New perspectives on the Breuil-Mézard conjecture (joint with M. Emerton)
(ENGLISH)
Toby Gee 氏 (Imperial College London)
New perspectives on the Breuil-Mézard conjecture (joint with M. Emerton)
(ENGLISH)
[ 講演概要 ]
I will discuss joint work with Matthew Emerton on geometric approaches to the Breuil-Mézard conjecture, generalising a geometric approach of Breuil and Mézard. I will discuss a proof of the geometric version of the original conjecture, as well as work in progress on a geometric version of the conjecture which does not make use of a fixed residual representation.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
I will discuss joint work with Matthew Emerton on geometric approaches to the Breuil-Mézard conjecture, generalising a geometric approach of Breuil and Mézard. I will discuss a proof of the geometric version of the original conjecture, as well as work in progress on a geometric version of the conjecture which does not make use of a fixed residual representation.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2011年12月21日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
加藤和也 氏 (シカゴ大学)
Sharifi 予想について (JAPANESE)
加藤和也 氏 (シカゴ大学)
Sharifi 予想について (JAPANESE)
[ 講演概要 ]
円分体の数論とモジュラー曲線の間に深い関係があることは、Mazur と Wiles によって、岩澤主予想の証明に使われた。最近 Sharifi は、更にもう一段深い関係があるということを予想した。これに関する深谷太香子氏との共同研究について述べる。
円分体の数論とモジュラー曲線の間に深い関係があることは、Mazur と Wiles によって、岩澤主予想の証明に使われた。最近 Sharifi は、更にもう一段深い関係があるということを予想した。これに関する深谷太香子氏との共同研究について述べる。
2011年12月19日(月)
16:30-17:30 数理科学研究科棟(駒場) 117号室
いつもと曜日と部屋が違います。ご注意ください。
Tamas Szamuely 氏 (Budapest)
Galois Theory: Past and Present (ENGLISH)
いつもと曜日と部屋が違います。ご注意ください。
Tamas Szamuely 氏 (Budapest)
Galois Theory: Past and Present (ENGLISH)
2011年12月14日(水)
17:30-18:30 数理科学研究科棟(駒場) 056号室
いつもと時間が異なりますのでご注意ください.
Lucien Szpiro 氏 (City University of New York)
Good and bad reduction for algebraic dynamical systems (ENGLISH)
いつもと時間が異なりますのでご注意ください.
Lucien Szpiro 氏 (City University of New York)
Good and bad reduction for algebraic dynamical systems (ENGLISH)
[ 講演概要 ]
We will report on a recent work with collaborators in New York on the
different ways to look at degenerations of a dynamical system in a one
parameter family. Resultants, conductors and isotriviality will be analyzed.
We will report on a recent work with collaborators in New York on the
different ways to look at degenerations of a dynamical system in a one
parameter family. Resultants, conductors and isotriviality will be analyzed.
2011年12月08日(木)
18:30-19:30 数理科学研究科棟(駒場) 056号室
曜日,時間がいつもと異なりますのでご注意ください.
Gerd Faltings 氏 (Max Planck Institute for Mathematics, Bonn)
Nonabelian p-adic Hodge theory and Frobenius (ENGLISH)
曜日,時間がいつもと異なりますのでご注意ください.
Gerd Faltings 氏 (Max Planck Institute for Mathematics, Bonn)
Nonabelian p-adic Hodge theory and Frobenius (ENGLISH)
[ 講演概要 ]
Some time ago, I constructed a relation between Higgs-bundles and p-adic etale sheaves, on curves over a p-adic field. This corresponds (say in the abelian case) to a Hodge-Tate picture. In the lecture I try to explain one way to introduce Frobenius into the theory. We do not get a complete theory but at least can treat p-adic sheaves close to trivial.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
Some time ago, I constructed a relation between Higgs-bundles and p-adic etale sheaves, on curves over a p-adic field. This corresponds (say in the abelian case) to a Hodge-Tate picture. In the lecture I try to explain one way to introduce Frobenius into the theory. We do not get a complete theory but at least can treat p-adic sheaves close to trivial.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2011年11月09日(水)
18:00-19:00 数理科学研究科棟(駒場) 056号室
いつもと時間が異なりますのでご注意下さい.
志甫 淳 氏 (東京大学数理科学研究科)
On extension and restriction of overconvergent isocrystals (ENGLISH)
いつもと時間が異なりますのでご注意下さい.
志甫 淳 氏 (東京大学数理科学研究科)
On extension and restriction of overconvergent isocrystals (ENGLISH)
[ 講演概要 ]
First we explain two theorems concerning (log) extension of overconvergent isocrystals. One is a p-adic analogue of the theorem of logarithmic extension of regular integrable connections, and the other is a p-adic analogue of Zariski-Nagata purity. Next we explain a theorem which says that we can check certain property of overconvergent isocrystals by restricting them to curves.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
First we explain two theorems concerning (log) extension of overconvergent isocrystals. One is a p-adic analogue of the theorem of logarithmic extension of regular integrable connections, and the other is a p-adic analogue of Zariski-Nagata purity. Next we explain a theorem which says that we can check certain property of overconvergent isocrystals by restricting them to curves.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2011年11月02日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
金城 謙作 氏 (東京大学数理科学研究科)
Hypergeometric series and arithmetic-geometric mean over 2-adic fields (JAPANESE)
金城 謙作 氏 (東京大学数理科学研究科)
Hypergeometric series and arithmetic-geometric mean over 2-adic fields (JAPANESE)
[ 講演概要 ]
Dwork proved that the Gaussian hypergeometric function on p-adic numbers
can be extended to a function which takes values of the unit roots of
ordinary elliptic curves over a finite field of characteristic p>2.
We present an analogous theory in the case p=2.
As an application, we give a relation between the canonical lift
and the unit root of an elliptic curve over a finite field of
characteristic 2
by using the 2-adic arithmetic-geometric mean.
Dwork proved that the Gaussian hypergeometric function on p-adic numbers
can be extended to a function which takes values of the unit roots of
ordinary elliptic curves over a finite field of characteristic p>2.
We present an analogous theory in the case p=2.
As an application, we give a relation between the canonical lift
and the unit root of an elliptic curve over a finite field of
characteristic 2
by using the 2-adic arithmetic-geometric mean.
2011年10月19日(水)
17:30-18:30 数理科学研究科棟(駒場) 056号室
本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。
Andrei Suslin 氏 (Northwestern University)
K_2 of the biquaternion algebra (ENGLISH)
[ 参考URL ]
http://www.ihes.fr/~abbes/SGA/suslin.pdf
本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。
Andrei Suslin 氏 (Northwestern University)
K_2 of the biquaternion algebra (ENGLISH)
[ 参考URL ]
http://www.ihes.fr/~abbes/SGA/suslin.pdf
2011年07月27日(水)
16:00-18:15 数理科学研究科棟(駒場) 123号室
いつもと時間,教室が異なりますのでご注意下さい.
斎藤毅 氏 (東京大学数理科学研究科) 16:00-17:00
Discriminants and determinant of a hypersurface of even dimension (ENGLISH)
Multiplicities of discriminants (ENGLISH)
いつもと時間,教室が異なりますのでご注意下さい.
斎藤毅 氏 (東京大学数理科学研究科) 16:00-17:00
Discriminants and determinant of a hypersurface of even dimension (ENGLISH)
[ 講演概要 ]
The determinant of the cohomology of a smooth hypersurface
of even dimension as a quadratic character of the absolute
Galois group is computed by the discriminant of the de Rham
cohomology. They are also computed by the discriminant of a
defining polynomial. We determine the sign involved by testing
the formula for the Fermat hypersurfaces.
This is a joint work with J-P. Serre.
Dennis Eriksson 氏 (University of Gothenburg) 17:15-18:15The determinant of the cohomology of a smooth hypersurface
of even dimension as a quadratic character of the absolute
Galois group is computed by the discriminant of the de Rham
cohomology. They are also computed by the discriminant of a
defining polynomial. We determine the sign involved by testing
the formula for the Fermat hypersurfaces.
This is a joint work with J-P. Serre.
Multiplicities of discriminants (ENGLISH)
[ 講演概要 ]
The discriminant of a homogenous polynomial is another homogenous
polynomial in the coefficients of the polynomial, which is zero
if and only if the corresponding hypersurface is singular. In
case the coefficients are in a discrete valuation ring, the
order of the discriminant (if non-zero) measures the bad
reduction. We give some new results on this order, and in
particular tie it to Bloch's conjecture/the Kato-T.Saito formula
on equality of localized Chern classes and Artin conductors. We
can precisely compute all the numbers in the case of ternary
forms, giving a partial generalization of Ogg's formula for
elliptic curves.
The discriminant of a homogenous polynomial is another homogenous
polynomial in the coefficients of the polynomial, which is zero
if and only if the corresponding hypersurface is singular. In
case the coefficients are in a discrete valuation ring, the
order of the discriminant (if non-zero) measures the bad
reduction. We give some new results on this order, and in
particular tie it to Bloch's conjecture/the Kato-T.Saito formula
on equality of localized Chern classes and Artin conductors. We
can precisely compute all the numbers in the case of ternary
forms, giving a partial generalization of Ogg's formula for
elliptic curves.
2011年06月15日(水)
17:30-18:30 数理科学研究科棟(駒場) 056号室
阿部知行 氏 (東大IPMU)
Product formula for $p$-adic epsilon factors (ENGLISH)
阿部知行 氏 (東大IPMU)
Product formula for $p$-adic epsilon factors (ENGLISH)
[ 講演概要 ]
I would like to talk about my recent work jointly with A. Marmora on a product formula for $p$-adic epsilon factors. In 80's Deligne conjectured that a constant appearing in the functional equation of $L$-function of $\\ell$-adic lisse sheaf can be written by means of local contributions, and proved some particular cases. This conjecture was proven later by Laumon, and was used in the Lafforgue's proof of the Langlands' program for functional filed case. In my talk, I would like to prove a $p$-adic analog of this product formula.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
I would like to talk about my recent work jointly with A. Marmora on a product formula for $p$-adic epsilon factors. In 80's Deligne conjectured that a constant appearing in the functional equation of $L$-function of $\\ell$-adic lisse sheaf can be written by means of local contributions, and proved some particular cases. This conjecture was proven later by Laumon, and was used in the Lafforgue's proof of the Langlands' program for functional filed case. In my talk, I would like to prove a $p$-adic analog of this product formula.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2011年06月08日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
平野雄一 氏 (東京大学数理科学研究科)
保型形式の合同式と岩澤λ不変量について (JAPANESE)
平野雄一 氏 (東京大学数理科学研究科)
保型形式の合同式と岩澤λ不変量について (JAPANESE)
[ 講演概要 ]
カスプ形式とEisenstein級数のFourier係数の間の合同式からそれらに付随する L 関数の特殊値の間の合同式を導くという問題を考える。
これは保型形式の重さが 2 の場合はVatsal氏によって証明された。本講演では,重さが 2 以上の場合に一般化できた結果を紹介する。
さらに、この結果を保型形式に付随する p 進Galois表現が剰余して可約という特別な場合の岩澤主予想に応用する。これは、重さが 2 の場合のGreenberg氏及びVatsal氏の結果を部分的に一般化したものである。
カスプ形式とEisenstein級数のFourier係数の間の合同式からそれらに付随する L 関数の特殊値の間の合同式を導くという問題を考える。
これは保型形式の重さが 2 の場合はVatsal氏によって証明された。本講演では,重さが 2 以上の場合に一般化できた結果を紹介する。
さらに、この結果を保型形式に付随する p 進Galois表現が剰余して可約という特別な場合の岩澤主予想に応用する。これは、重さが 2 の場合のGreenberg氏及びVatsal氏の結果を部分的に一般化したものである。
2011年05月25日(水)
17:00-18:00 数理科学研究科棟(駒場) 056号室
松本雄也 氏 (東京大学数理科学研究科)
On good reduction of some K3 surfaces (JAPANESE)
松本雄也 氏 (東京大学数理科学研究科)
On good reduction of some K3 surfaces (JAPANESE)
[ 講演概要 ]
局所体 K 上の多様体がいつ良い還元をもつかを調べる.
多様体 X が良い還元をもつならば,
X の l 進エタールコホモロジーから定まるガロア表現は不分岐表現となる
(ここで l は K の剰余体の標数と異なる素数).
では逆に,このガロア表現が不分岐ならば良い還元をもつか …(*)
という問題を考えると,
X がアーベル多様体ならば (*) は成り立つ(Serre--Tate)が,
一般の多様体では成り立たない.
そこで,(*) が成り立つような多様体のクラスを探すことを考える.
この講演では,ある種の K3 曲面について (*) をやや弱めた主張が成り立つことを紹介する.
局所体 K 上の多様体がいつ良い還元をもつかを調べる.
多様体 X が良い還元をもつならば,
X の l 進エタールコホモロジーから定まるガロア表現は不分岐表現となる
(ここで l は K の剰余体の標数と異なる素数).
では逆に,このガロア表現が不分岐ならば良い還元をもつか …(*)
という問題を考えると,
X がアーベル多様体ならば (*) は成り立つ(Serre--Tate)が,
一般の多様体では成り立たない.
そこで,(*) が成り立つような多様体のクラスを探すことを考える.
この講演では,ある種の K3 曲面について (*) をやや弱めた主張が成り立つことを紹介する.
2011年05月18日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
西本将樹 氏 (東京大学数理科学研究科)
On the linear independence of values of some Dirichlet series (JAPANESE)
西本将樹 氏 (東京大学数理科学研究科)
On the linear independence of values of some Dirichlet series (JAPANESE)
[ 講演概要 ]
周期的な係数を持つDirichlet級数の特殊値が生成する$\\Q$線型空間の
次元の下界について,得られた評価を紹介する.
特にこのようなDirichlet級数の偶数または奇数での値に,
無限個の無理数が存在することが分かる.
考えているDirichlet級数がRiemannの$\\zeta$関数のときは,同様の結果が
2000年にT.Rivoalにより証明されており,今回の結果はその一般化に相当する.
周期的な係数を持つDirichlet級数の特殊値が生成する$\\Q$線型空間の
次元の下界について,得られた評価を紹介する.
特にこのようなDirichlet級数の偶数または奇数での値に,
無限個の無理数が存在することが分かる.
考えているDirichlet級数がRiemannの$\\zeta$関数のときは,同様の結果が
2000年にT.Rivoalにより証明されており,今回の結果はその一般化に相当する.
2011年05月11日(水)
17:30-18:30 数理科学研究科棟(駒場) 056号室
Michel Raynaud 氏 (Universite Paris-Sud)
Permanence following Temkin (ENGLISH)
Michel Raynaud 氏 (Universite Paris-Sud)
Permanence following Temkin (ENGLISH)
[ 講演概要 ]
When one proceeds to a specialization, the good properties of algebraic equations may be destroyed. Starting with a bad specialization, one can try to improve it by performing modifications under control. If, at the end of the process, the initial good properties are preserved, one speaks of permanence. I shall give old and new examples of permanence. The new one concerns the relative semi-stable reduction of curves recently proved by Temkin.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
When one proceeds to a specialization, the good properties of algebraic equations may be destroyed. Starting with a bad specialization, one can try to improve it by performing modifications under control. If, at the end of the process, the initial good properties are preserved, one speaks of permanence. I shall give old and new examples of permanence. The new one concerns the relative semi-stable reduction of curves recently proved by Temkin.
(本講演は「東京パリ数論幾何セミナー」として、インターネットによる東大数理とIHESとの双方向同時中継で行います。)
2011年04月27日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
高井勇輝 氏 (東京大学数理科学研究科)
Sturm の定理の Hilbert 保型形式に対する類似 (JAPANESE)
高井勇輝 氏 (東京大学数理科学研究科)
Sturm の定理の Hilbert 保型形式に対する類似 (JAPANESE)
[ 講演概要 ]
Sturm は重さ$k$, レベル$\\Gamma_1(N)$ のmod $\\ell$ 正則楕円保型形式が最初
の$(k/12)[\\Gamma_1(1):\\Gamma_1(N)]$ までの mod $\\ell$ Fourier 係数で決ま
ることを示した.
本講演では, Sturm の結果のHilbert保型形式に対する類似について得た結果を
紹介する.
証明には代数幾何的な手法, 特に, ampleな線束のpositivityを用いる.
Sturm は重さ$k$, レベル$\\Gamma_1(N)$ のmod $\\ell$ 正則楕円保型形式が最初
の$(k/12)[\\Gamma_1(1):\\Gamma_1(N)]$ までの mod $\\ell$ Fourier 係数で決ま
ることを示した.
本講演では, Sturm の結果のHilbert保型形式に対する類似について得た結果を
紹介する.
証明には代数幾何的な手法, 特に, ampleな線束のpositivityを用いる.
2011年02月10日(木)
11:00-12:00 数理科学研究科棟(駒場) 056号室
曜日・時間がいつもと異なりますのでご注意ください.
Joseph Ayoub 氏 (University of Zurich)
The motivic Galois group and periods of algebraic varieties (ENGLISH)
曜日・時間がいつもと異なりますのでご注意ください.
Joseph Ayoub 氏 (University of Zurich)
The motivic Galois group and periods of algebraic varieties (ENGLISH)
[ 講演概要 ]
We give a construction of the motivic Galois group of $\\Q$ and explain the conjectural link with the ring of periods of algebraic varieties. Then we introduce the ring of formal periods and explain how the conjectural link with the motivic Galois group can be realized for them.
We give a construction of the motivic Galois group of $\\Q$ and explain the conjectural link with the ring of periods of algebraic varieties. Then we introduce the ring of formal periods and explain how the conjectural link with the motivic Galois group can be realized for them.
2011年01月26日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
小林真一 氏 (東北大学)
楕円曲線の超特異素点におけるp-進Gross-Zagier公式 (JAPANESE)
小林真一 氏 (東北大学)
楕円曲線の超特異素点におけるp-進Gross-Zagier公式 (JAPANESE)
[ 講演概要 ]
p進Gross-Zagier公式は, 楕円曲線のp進L関数の微分値をHeegner点のp進高さで記述する公式である. 楕円曲線がpで通常還元をもつときは, 20年以上前にPerrin-Riouによって証明されていた. 最近, pで超特異還元をもつときにも証明できたのでそれを紹介する. この講演では特に証明の解説に重点をおいて話したい.
p進Gross-Zagier公式は, 楕円曲線のp進L関数の微分値をHeegner点のp進高さで記述する公式である. 楕円曲線がpで通常還元をもつときは, 20年以上前にPerrin-Riouによって証明されていた. 最近, pで超特異還元をもつときにも証明できたのでそれを紹介する. この講演では特に証明の解説に重点をおいて話したい.
2011年01月12日(水)
16:30-18:45 数理科学研究科棟(駒場) 056号室
Zhonghua Li 氏 (東京大学大学院数理科学研究科) 16:30-17:30
On regularized double shuffle relation for multiple zeta values (ENGLISH)
Spines with View Toward Modular Forms (ENGLISH)
Zhonghua Li 氏 (東京大学大学院数理科学研究科) 16:30-17:30
On regularized double shuffle relation for multiple zeta values (ENGLISH)
[ 講演概要 ]
Multiple zeta values(MZVs) are natural generalizations of Riemann zeta values. There are many rational relations among MZVs. It is conjectured that the regularized double shuffle relations contian all rational relations of MZVs. So other rational relations should be deduced from regularized dhouble shuffle relations. In this talk, we discuss some results on this problem. We define the gamma series accociated to elements satisfying regularized double shuffle relations and give some properties. Moreover we show that the Ohno-Zagier relations can be deduced from regularized double shuffle relations.
Dan Yasaki 氏 (North Carolina University) 17:45-18:45Multiple zeta values(MZVs) are natural generalizations of Riemann zeta values. There are many rational relations among MZVs. It is conjectured that the regularized double shuffle relations contian all rational relations of MZVs. So other rational relations should be deduced from regularized dhouble shuffle relations. In this talk, we discuss some results on this problem. We define the gamma series accociated to elements satisfying regularized double shuffle relations and give some properties. Moreover we show that the Ohno-Zagier relations can be deduced from regularized double shuffle relations.
Spines with View Toward Modular Forms (ENGLISH)
[ 講演概要 ]
The study of an arithmetic group is often aided by the fact that it acts naturally on a nice topological object. One can then use topological or geometric techniques to try to recover arithmetic data. For example, one often studies SL_2(Z) in terms of
its action on the upper half plane. In this talk, we will examine spines, which are the ``smallest" such spaces for a given arithmetic group. On overview of some known theoretical results and explicit computations will be given.
The study of an arithmetic group is often aided by the fact that it acts naturally on a nice topological object. One can then use topological or geometric techniques to try to recover arithmetic data. For example, one often studies SL_2(Z) in terms of
its action on the upper half plane. In this talk, we will examine spines, which are the ``smallest" such spaces for a given arithmetic group. On overview of some known theoretical results and explicit computations will be given.
2010年12月22日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
原隆 氏 (東京大学大学院数理科学研究科)
総実代数体の羃指数p型非可換p拡大に対するp-進ゼータ関数の帰納的構成 (JAPANESE)
原隆 氏 (東京大学大学院数理科学研究科)
総実代数体の羃指数p型非可換p拡大に対するp-進ゼータ関数の帰納的構成 (JAPANESE)
[ 講演概要 ]
総実代数体の非可換岩澤理論に於けるp-進ゼータ関数の構成及び
主予想の証明について、特別な場合に解説する。
総実代数体の非可換岩澤主予想は、David Burns 及び加藤和也による
「ゼータ関数の貼り合わせ」の手法を用いて加藤、Mahesh Kakde 及び
講演者によって特別な場合に証明されてきた (Jurgen Ritter,
Alfred Weiss も異なる定式化の下で主予想が成立する例を構成している)。
本講演では拡大のガロワ群がp進整数環と羃指数pの有限群の直積と
同型の場合に、Burns-加藤の手法と帰納的な議論を組み合わせることで
非可換岩澤主予想が証明できることを紹介する。
なお、総実代数体の非可換岩澤主予想は、2010年に
Ritter-Weiss 及び Kakde によって一般の場合にも
解決されていることを注記しておく。
総実代数体の非可換岩澤理論に於けるp-進ゼータ関数の構成及び
主予想の証明について、特別な場合に解説する。
総実代数体の非可換岩澤主予想は、David Burns 及び加藤和也による
「ゼータ関数の貼り合わせ」の手法を用いて加藤、Mahesh Kakde 及び
講演者によって特別な場合に証明されてきた (Jurgen Ritter,
Alfred Weiss も異なる定式化の下で主予想が成立する例を構成している)。
本講演では拡大のガロワ群がp進整数環と羃指数pの有限群の直積と
同型の場合に、Burns-加藤の手法と帰納的な議論を組み合わせることで
非可換岩澤主予想が証明できることを紹介する。
なお、総実代数体の非可換岩澤主予想は、2010年に
Ritter-Weiss 及び Kakde によって一般の場合にも
解決されていることを注記しておく。
2010年12月01日(水)
16:30-18:45 数理科学研究科棟(駒場) 056号室
星裕一郎 氏 (京都大学数理解析研究所) 16:30-17:30
On a problem of Matsumoto and Tamagawa concerning monodromic fullness of hyperbolic curves (JAPANESE)
Galois theory for schemes (ENGLISH)
星裕一郎 氏 (京都大学数理解析研究所) 16:30-17:30
On a problem of Matsumoto and Tamagawa concerning monodromic fullness of hyperbolic curves (JAPANESE)
[ 講演概要 ]
In this talk, we will discuss the following problem posed by Makoto Matsumoto and Akio Tamagawa concerning monodromic fullness of hyperbolic curves.
For a hyperbolic curve X over a number field, are the following three conditions equivalent?
(A) For any prime number l, X is quasi-l-monodromically full.
(B) There exists a prime number l such that X is l-monodromically full.
(C) X is l-monodromically full for all but finitely many prime numbers l.
The property of being (quasi-)monodromically full may be regarded as an analogue for hyperbolic curves of the property of not admitting complex multiplication for elliptic curves, and the above equivalence may be regarded as an analogue for hyperbolic curves of the following result concerning the Galois representation on the Tate module of an elliptic curve over a number field proven by Jean-Pierre Serre.
For an elliptic curve E over a number field, the following four conditions are equivalent:
(0) E does not admit complex multiplication.
(1) For any prime number l, the image of the l-adic Galois representation associated to E is open.
(2) There exists a prime number l such that the l-adic Galois representation associated to E is surjective.
(3) The l-adic Galois representation associated to E is surjective for all but finitely many prime numbers l.
In this talk, I will present some results concerning the above problem in the case where the given hyperbolic curve is of genus zero. In particular, I will give an example of a hyperbolic curve of type (0,4) over a number field which satisfies condition (C) but does not satisfy condition (A).
Marco Garuti 氏 (University of Padova) 17:45-18:45In this talk, we will discuss the following problem posed by Makoto Matsumoto and Akio Tamagawa concerning monodromic fullness of hyperbolic curves.
For a hyperbolic curve X over a number field, are the following three conditions equivalent?
(A) For any prime number l, X is quasi-l-monodromically full.
(B) There exists a prime number l such that X is l-monodromically full.
(C) X is l-monodromically full for all but finitely many prime numbers l.
The property of being (quasi-)monodromically full may be regarded as an analogue for hyperbolic curves of the property of not admitting complex multiplication for elliptic curves, and the above equivalence may be regarded as an analogue for hyperbolic curves of the following result concerning the Galois representation on the Tate module of an elliptic curve over a number field proven by Jean-Pierre Serre.
For an elliptic curve E over a number field, the following four conditions are equivalent:
(0) E does not admit complex multiplication.
(1) For any prime number l, the image of the l-adic Galois representation associated to E is open.
(2) There exists a prime number l such that the l-adic Galois representation associated to E is surjective.
(3) The l-adic Galois representation associated to E is surjective for all but finitely many prime numbers l.
In this talk, I will present some results concerning the above problem in the case where the given hyperbolic curve is of genus zero. In particular, I will give an example of a hyperbolic curve of type (0,4) over a number field which satisfies condition (C) but does not satisfy condition (A).
Galois theory for schemes (ENGLISH)
[ 講演概要 ]
We discuss some aspects of finite group scheme actions: the Galois correspondence and the notion of Galois closure.
We discuss some aspects of finite group scheme actions: the Galois correspondence and the notion of Galois closure.
2010年11月17日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
原瀬 晋 氏 (東京大学大学院数理科学研究科)
F_2-線形擬似乱数発生法の評価に用いる格子の簡約基底計算の高速化 (JAPANESE)
原瀬 晋 氏 (東京大学大学院数理科学研究科)
F_2-線形擬似乱数発生法の評価に用いる格子の簡約基底計算の高速化 (JAPANESE)
[ 講演概要 ]
(部分的に松本眞氏、斎藤睦夫氏との共同研究)
擬似乱数発生法とは、あたかも乱数であるかのようにふるまう数列を、計算機上で
決定的なアルゴリズムにより発生する方法のことである。擬似乱数を評価する規準
の一つとして、高次元均等分布性がしばしば用いられる。メルセンヌツイスター法
を含む二元体上の線形擬似乱数発生法に対しては、上位ビットの均等分布の次元を
具体的に計算することが可能であり、擬似乱数の出力列から構成したある格子の簡
約基底を求める問題(二元体係数形式的冪級数体の数の幾何)に帰着される(Couture-
L'Ecuyer-Tezuka(1993)およびTezuka(1994))。本研究では、前述の格子を用いた
計算法を発展させ、
(i) 冪級数成分の格子点を擬似乱数発生器の状態ベクトルで表現する、
(ii) 射影を用いてv次元簡約基底からv-1次元簡約基底を計算する、
(iii) 効率的な格子簡約アルゴリズムを適用する、
などの手法を導入し、均等分布の次元計算の高速化を提案する。この方法は、
Couture-L'Ecuyer(2000)による双対格子を用いた改良よりも計算量が少なく、計算機
実験でも10倍程度の高速化が得られたことを紹介する。この結果は、ワードサイズの
大きな擬似乱数発生法の設計や擬似乱数の並列発生スキームなどへの応用が考えられる。
(部分的に松本眞氏、斎藤睦夫氏との共同研究)
擬似乱数発生法とは、あたかも乱数であるかのようにふるまう数列を、計算機上で
決定的なアルゴリズムにより発生する方法のことである。擬似乱数を評価する規準
の一つとして、高次元均等分布性がしばしば用いられる。メルセンヌツイスター法
を含む二元体上の線形擬似乱数発生法に対しては、上位ビットの均等分布の次元を
具体的に計算することが可能であり、擬似乱数の出力列から構成したある格子の簡
約基底を求める問題(二元体係数形式的冪級数体の数の幾何)に帰着される(Couture-
L'Ecuyer-Tezuka(1993)およびTezuka(1994))。本研究では、前述の格子を用いた
計算法を発展させ、
(i) 冪級数成分の格子点を擬似乱数発生器の状態ベクトルで表現する、
(ii) 射影を用いてv次元簡約基底からv-1次元簡約基底を計算する、
(iii) 効率的な格子簡約アルゴリズムを適用する、
などの手法を導入し、均等分布の次元計算の高速化を提案する。この方法は、
Couture-L'Ecuyer(2000)による双対格子を用いた改良よりも計算量が少なく、計算機
実験でも10倍程度の高速化が得られたことを紹介する。この結果は、ワードサイズの
大きな擬似乱数発生法の設計や擬似乱数の並列発生スキームなどへの応用が考えられる。
2010年10月06日(水)
16:30-17:30 数理科学研究科棟(駒場) 117号室
いつもと教室が異なりますのでご注意ください
Hélène Esnault 氏 (Universität Duisburg-Essen)
Finite group actions on the affine space (ENGLISH)
いつもと教室が異なりますのでご注意ください
Hélène Esnault 氏 (Universität Duisburg-Essen)
Finite group actions on the affine space (ENGLISH)
[ 講演概要 ]
If $G$ is a finite $\\ell$-group acting on an affine space $\\A^n$ over a
finite field $K$ of cardinality prime to $\\ell$, Serre shows that there
exists a rational fixed point. We generalize this to the case where $K$ is a
henselian discretely valued field of characteristic zero with algebraically
closed residue field and with residue characteristic different from $\\ell$.
We also treat the case where the residue field is finite of cardinality $q$
such that $\\ell$ divides $q-1$. To this aim, we study group actions on weak
N\\'eron models.
(Joint work with Johannes Nicaise)
If $G$ is a finite $\\ell$-group acting on an affine space $\\A^n$ over a
finite field $K$ of cardinality prime to $\\ell$, Serre shows that there
exists a rational fixed point. We generalize this to the case where $K$ is a
henselian discretely valued field of characteristic zero with algebraically
closed residue field and with residue characteristic different from $\\ell$.
We also treat the case where the residue field is finite of cardinality $q$
such that $\\ell$ divides $q-1$. To this aim, we study group actions on weak
N\\'eron models.
(Joint work with Johannes Nicaise)
2010年07月07日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
津嶋 貴弘 氏 (東京大学数理科学研究科)
On the stable reduction of $X_0(p^4)$ (JAPANESE)
津嶋 貴弘 氏 (東京大学数理科学研究科)
On the stable reduction of $X_0(p^4)$ (JAPANESE)