代数学コロキウム

過去の記録 ~09/27次回の予定今後の予定 09/28~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 056号室
担当者 今井 直毅, 三枝 洋一

過去の記録

2014年05月21日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Shenghao Sun 氏 (Mathematical Sciences Center of Tsinghua University)
Parity of Betti numbers in étale cohomology (ENGLISH)
[ 講演概要 ]
By Hodge symmetry, the Betti numbers of a complex projective smooth variety in odd degrees are even. When the base field has characteristic p, Deligne proved the hard Lefschetz theorem in etale cohomology, and the parity result follows from this. Suh has generalized this to proper smooth varieties in characteristic p, using crystalline cohomology.
The purity of intersection cohomology group of proper varieties suggests that the same parity property should hold for these groups in characteristic p. We proved this by investigating the symmetry in the categorical level.
In particular, we reproved Suh's result, using merely etale cohomology. Some related results will be discussed. This is joint work with Weizhe Zheng.

(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2014年04月30日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
丸山拓也 氏 (東京大学数理科学研究科)
An effective upper bound for the number of principally polarized Abelian schemes (JAPANESE)

2014年04月23日(水)

16:40-17:40   数理科学研究科棟(駒場) 002号室
三枝洋一 氏 (東京大学数理科学研究科)
Non-tempered A-packets and the Rapoport-Zink spaces (JAPANESE)

2014年04月16日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Olivier Wittenberg 氏 (ENS and CNRS)
On the cycle class map for zero-cycles over local fields (ENGLISH)
[ 講演概要 ]
The Chow group of zero-cycles of a smooth and projective variety defined over a field k is an invariant of an arithmetic and geometric nature which is well understood only when k is a finite field (by higher-dimensional class field theory). In this talk, we will discuss the case of local and strictly local fields. We prove in particular the injectivity of the cycle class map to integral l-adic cohomology for a large class of surfaces with positive geometric genus over p-adic fields. The same statement holds for semistable K3 surfaces over C((t)), but does not hold in general for surfaces over C((t)) or over the maximal unramified extension of a p-adic field. This is a joint work with Hélène Esnault.

(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2014年02月05日(水)

17:10-18:10   数理科学研究科棟(駒場) 002号室
いつもと時間・場所が異なりますのでご注意ください
Neven Grbac 氏 (University of Rijeka)
The Franke filtration of spaces of automorphic forms (ENGLISH)
[ 講演概要 ]
The Franke filtration is a filtration of the space of all adelic automorphic forms on a reductive group defined over a number field. The filtration steps can be described as certain induced representations, which has applications to the study of Eisenstein cohomology. In this talk, we shall describe the Franke filtration in general, give several examples, and explain its connection to cohomology.

2014年01月24日(金)

16:40-18:50   数理科学研究科棟(駒場) 056号室
いつもと曜日が異なりますのご注意ください
Christopher Davis 氏 (University of Copenhagen) 16:40-17:40
An approach to p-adic Hodge theory over number fields (ENGLISH)
[ 講演概要 ]
As motivation from classical Hodge theory, we will first compare singular cohomology and (algebraic) de Rham cohomology for a complex analytic variety. We will also describe a sense in which this comparison does not have a natural analogue over the real numbers. We think of the complex numbers as a "big" ring which is necessary for the comparison isomorphism to work. In the p-adic setting, the analogous study is known as p-adic Hodge theory, and the "big" rings there are even bigger. There are many approaches to p-adic Hodge theory, and we will introduce one tool in particular: (phi, Gamma)-modules. The goal of this talk is to describe a preliminary attempt to find an analogue of this theory (and analogues of its "big" rings) which makes sense over number fields (rather than p-adic fields). This is joint work with Kiran Kedlaya.
Bryden Cais 氏 (University of Arizona) 17:50-18:50
Canonical lifts of norm fields and applications (ENGLISH)
[ 講演概要 ]
In this talk, we begin by outlining the Fontaine-Wintenberger theory of norm fields and explain its application to the classification of p-adic Galois representations on F_p-vector spaces. In order to lift this to a classification of p-adic representations on Z_p-modules, it is necessary to lift the characteristic p norm field constructions of Fontaine-Wintenberger to characteristic zero. We will explain how to canonically perform such lifting in many interesting cases, as well as applications to generalizing a theorem of Kisin on the restriction of crystalline p-adic Galois representations. This is joint work with Christopher Davis.

2014年01月22日(水)

18:00-19:00   数理科学研究科棟(駒場) 117号室
いつもと場所が異なりますのでご注意ください
柏原正樹 氏 (京都大学数理解析研究所)
Riemann-Hilbert correspondence for irregular holonomic D-modules (ENGLISH)
[ 講演概要 ]
The classical Riemann-Hilbert correspondence establishes an equivalence between the derived category of regular holonomic D-modules and the derived category of constructible sheaves. Recently, I, with Andrea D'Agnolo, proved a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily regular (arXiv:1311.2374). In this correspondence, we have to replace the derived category of constructible sheaves with a full subcategory of ind-sheaves on the product of the base space and the real projective line. The construction is therefore based on the theory of ind-sheaves by Kashiwara-Schapira, and also it is influenced by Tamarkin's work. Among the main ingredients of our proof is the description of the structure of flat meromorphic connections due to Takuro Mochizuki and Kiran Kedlaya.
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2014年01月15日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
Stephen Lichtenbaum 氏 (Brown University)
Special values of zeta-functions of schemes (ENGLISH)
[ 講演概要 ]
We will give conjectured formulas giving the behavior of the
seta-function of regular schemes projective and flat over Spec Z at
non-positive integers in terms of Weil-etale cohomology. We will also
explain the conjectured relationship of Weil-etale cohomology to etale
cohomology, which makes it possible to express these formulas also in terms
of etale cohomology.

2014年01月08日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
吉川祥 氏 (東京大学数理科学研究科)
楕円曲線の判別式の巾根と等分点 (JAPANESE)
[ 講演概要 ]
We give an explicit and intrinsic description of (the torsor defined by the 12th roots of) the discriminant of an elliptic curve using the group of its 12-torsion points and the Weil pairing. As an application, we extend a result of Coates (which deals with the characteristic 0 case) to the case where the characteristic of the base field is not 2 or 3. This is a joint work with Kohei Fukuda.

2013年12月18日(水)

18:00-19:00   数理科学研究科棟(駒場) 117号室
いつもと場所が異なりますのでご注意ください
加藤和也 氏 (シカゴ大学)
Heights of motives (ENGLISH)
[ 講演概要 ]
The height of a rational number a/b (a, b integers which are coprime) is defined as max(|a|, |b|). A rational number with small (resp. big) height is a simple (resp. complicated)  number. Though the notion height is so naive, height has played fundamental roles in number theory. There are important variants of this notion. In 1983, when Faltings proved Mordell conjecture, Faltings first proved Tate conjecture for abelian variaties by defining heights of abelian varieties, and then he deduced Mordell conjecture from the latter conjecture. I explain that his height of an abelian variety is generalized to the height of a motive. This generalization of height is related to open problems in number theory. If we can prove finiteness of the number of motives of bounded heights, we can prove important conjectures in number theory such as general Tate conjecture and Mordell-Weil type conjectures in many cases.
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2013年11月20日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
Valentina Di Proietto 氏 (東京大学数理科学研究科)
On the homotopy exact sequence for the logarithmic de Rham fundamental group (ENGLISH)
[ 講演概要 ]
Let K be a field of characteristic 0 and let X* be a quasi-projective simple normal crossing log variety over the log point K* associated to K. We construct a log de Rham version of the homotopy sequence \\pi_1(X*/K*)-->\\pi_1(X*/K)--\\pi_1(K*/K)-->1 and prove that it is exact. Moreover we show the injectivity of the first map for certain quotients of the groups. Our proofs are purely algebraic. This is a joint work with A. Shiho.

2013年11月13日(水)

18:00-19:00   数理科学研究科棟(駒場) 056号室
Yichao Tian 氏 (Morningside Center for Mathematics)
Goren-Oort stratification and Tate cycles on Hilbert modular varieties (ENGLISH)
[ 講演概要 ]
Let B be a quaternionic algebra over a totally real field F, and p be a prime at least 3 unramified in F. We consider a Shimura variety X associated to B^* of level prime to p. A generalization of Deligne-Carayol's "modèle étrange" allows us to define an integral model for X. We will then define a Goren-Oort stratification on the characteristic p fiber of X, and show that each closed Goren-Oort stratum is an iterated P^1-fibration over another quaternionic Shimura variety in characteristic p. Now suppose that [F:Q] is even and that p is inert in F. An iteration of this construction gives rise to many algebraic cycles of middle codimension on the characteristic p fibre of Hilbert modular varieties of prime-to-p level. We show that the cohomological classes of these cycles generate a large subspace of the Tate cycles, which, in some special cases, coincides with the prediction of the Tate conjecture for the Hilbert modular variety over finite fields. This is a joint work with Liang Xiao.
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2013年10月30日(水)

16:40-17:40   数理科学研究科棟(駒場) 002号室
いつもと場所が異なりますのでご注意ください
Pierre Charollois 氏 (パリ第6大学)
Explicit integral cocycles on GLn and special values of p-adic partial zeta functions (ENGLISH)
[ 講演概要 ]
Building on earlier work by Sczech, we contruct an explicit integral valued cocycle on GLn(Z).
It allows for the detailed analysis of the order of vanishing and of the special value at s=0 of the p-adic partial zeta functions introduced by Pi. Cassou-Noguès and Deligne-Ribet. In particular we recover a result of Wiles (1990) on Gross conjecture.
Another construction, now based on Shintani's method, is shown to lead to a cohomologous cocycle. This is joint work with S. Dasgupta and M. Greenberg.

2013年10月16日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Peter Scholze 氏 (ボン大学)
Shimura varieties with infinite level, and torsion in the cohomology of locally symmetric spaces (ENGLISH)
[ 講演概要 ]
We will discuss the p-adic geometry of Shimura varieties with infinite level at p: They are perfectoid spaces, and there is a new period map defined at infinite level. As an application, we will discuss some results on torsion in the cohomology of locally symmetric spaces, and in particular the existence of Galois representations in this setup.

(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2013年07月24日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
寺門康裕 氏 (東京大学数理科学研究科)
The determinant of a double covering of the projective space of even dimension and the discriminant of the branch locus (JAPANESE)

2013年07月10日(水)

17:00-18:00   数理科学研究科棟(駒場) 056号室
谷田川友里 氏 (東京大学数理科学研究科)
On ramification filtration of local fields of equal characteristic (JAPANESE)

2013年07月03日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
芳木武仁 氏 (東京大学数理科学研究科)
A general formula for the discriminant of polynomials over $¥mathbb{F}_2$ determining the parity of the number of prime factors
(JAPANESE)
[ 講演概要 ]
In order to find irreducible polynomials over $\\mathbb{F}_2$ efficiently, the method using Swan's theorem is known. Swan's theorem determines the parity of the numberof irreducible factors of a polynomial $f$ over $\\mathbb{F}_2$ with no repeated root, by using the discriminant ${\\rm D}(\\tilde{f})\\pmod 8$, where $\\tilde{f}$ is a monic polynomial over $\\mathbb{Z}_2$ such that $\\tilde{f}=f\\pmod 2$. In the lecture, we will give the formula for the discriminant ${\\rm D}(\\tilde{f}) \\pmod 8$ for a polynomial $f$ over $\\mathbb{F}_2$ with no repeated root. By applying this formula to various types of polynomials, we shall get the parity of the number of irreducible factors of them.

2013年06月26日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
鈴木航介 氏 (東京大学数理科学研究科)
An explicit construction of point sets with large minimum Dick weight (JAPANESE)
[ 講演概要 ]
Walsh figure of merit WAFOM($P$) is a quality measure of point sets $P$ for quasi-Monte Carlo integration constructed by a digital net method. WAFOM($P$) is bounded by the minimum Dick weight of $P^¥perp$, where the Dick weight is a generalization of Hamming weight. In this talk, we give an explicit construction of point sets with large minimum Dick weight using Niederreiter-Xing sequences and Dick's interleaving construction. These point sets are also examples of low-WAFOM point sets.

2013年06月19日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
甲斐 亘 氏 (東京大学数理科学研究科)
A p-adic exponential map for the Picard group and its application to curves (JAPANESE)
[ 講演概要 ]
Let $\\mathcal{X}$ be a proper flat scheme over a complete discrete valuation ring $O_k$ of characteristic $(0,p)$. We define an exponential map from a subgroup of the first cohomology group of $O_¥mathcal{X}$ to the Picard group of $\\mathcal{X}$, mimicking the classical construction in complex geometry. This exponential map can be applied to prove a surjectivity property concerning the Albanese variety $Alb_{X}$ of a smooth variety $X$ over $k$.

2013年06月12日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Xinyi Yuan 氏 (University of California, Berkeley)
Hodge index theorem for adelic line bundles (ENGLISH)
[ 講演概要 ]
The Hodge index theorem of Faltings and Hriljac asserts that the Neron-Tate height pairing on a projective curve over a number field is equal to certain intersection pairing in the setting of Arakelov geometry. In the talk, I will present an extension of the result to adelic line bundles on higher dimensional varieties over finitely generated fields. Then we will talk about its relation to the non-archimedean Calabi-Yau theorem and the its application to algebraic dynamics. This is a joint work with Shou-Wu Zhang.

(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2013年05月29日(水)

16:40-17:40   数理科学研究科棟(駒場) 002号室
大川幸男 氏 (東京大学数理科学研究科)
On logarithmic nonabelian Hodge theory of higher level in characteristic p (JAPANESE)
[ 講演概要 ]
Ogus and Vologodsky studied a positive characteristic analogue of Simpson’s nonanelian Hodge theory over the complex number field. Now most part of their theory has been generalized to the case of log schemes by Schepler. In this talk, we generalize the global Cartier transform, which is one of the main theorem in nonabelian Hodge theory in positive characteristic, to the case of log schemes and of higher level. This can be regarded as a higher level version of a result of Schepler.

2013年05月15日(水)

16:40-17:40   数理科学研究科棟(駒場) 056号室
宮崎弘安 氏 (東京大学数理科学研究科)
Special values of zeta functions of singular varieties over finite fields via higher chow groups (JAPANESE)

2013年04月24日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
今井直毅 氏 (東京大学数理科学研究科)
Good reduction of ramified affinoids in the Lubin-Tate perfectoid space (ENGLISH)
[ 講演概要 ]
Recently, Weinstein finds some affinoids in the Lubin-Tate perfectoid space and computes their reduction in equal characteristic case. The cohomology of the reduction realizes the local Langlands correspondence for some representations of GL_h, which are unramified in some sense. In this talk, we introduce other affinoids in the Lubin-Tate perfectoid space in equal characteristic case, whose reduction realizes "ramified" representations of conductor exponent h+1. We call them ramified affinoids. We study the cohomology of the reduction and its relation with the local Langlands correspondence. This is a joint work with Takahiro Tsushima.

(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2013年04月10日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Deepam Patel 氏 (University of Amsterdam)
Motivic structure on higher homotopy of non-nilpotent spaces (ENGLISH)
[ 講演概要 ]
In his fundamental paper on the projective line minus three points, Deligne constructed certain extensions of mixed Tate motives arising from the fundamental group of the projective line minus three points. Since then, motivic structures on homotopy groups have been studied by many authors. In this talk, we will construct a motivic structure on the (nilpotent completion of) n-th homotopy group of P^{n} minus n+2 hyperplanes in general position.

(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2013年01月16日(水)

18:00-19:00   数理科学研究科棟(駒場) 002号室
大久保俊 氏 (東京大学数理科学研究科)
On differential modules associated to de Rham representations in the imperfect residue field case (ENGLISH)
[ 講演概要 ]
Let K be a CDVF of mixed characteristic (0,p) and G the absolute Galois group of K. When the residue field of K is perfect, Laurent Berger constructed a p-adic differential equation N_dR(V) for any de Rham representation V of G. In this talk, we will generalize his construction when the residue field of K is not perfect. We also explain some ramification properties of our N_dR, which are due to Adriano Marmora in the perfect residue field case.

(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

< 前へ 123456789 次へ >