代数学コロキウム

過去の記録 ~06/10次回の予定今後の予定 06/11~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室
担当者 今井 直毅,ケリー シェーン

今後の予定

2025年06月11日(水)

17:00-18:00   数理科学研究科棟(駒場) 117号室
Bruno Kahn 氏 (FJ-LMI)
Zeta and $L$-functions of Voevodsky motives
[ 講演概要 ]
We associate an $L$-function $L^{\text{near}}(M,s)$ to any geometric motive over a global field $K$ in the sense of Voevodsky. This is a Dirichlet series which converges in some half-plane and has an Euler product factorisation. When $M$ is the dual of $M(X)$ for $X$ a smooth projective variety, $L^{\text{near}}(M,s)$ differs from the alternating product of the zeta functions defined by Serre in 1969 only at places of bad reduction; in exchange, it is multiplicative with respect to exact triangles. If $K$ is a function field over $\mathbb{F}_q$, $L^{\text{near}}(M,s)$ is a rational function in $q^{-s}$ and enjoys a functional equation. The techniques use the full force of Ayoub's six (and even seven) operations.
[ 参考URL ]
https://webusers.imj-prg.fr/~bruno.kahn/

2025年06月18日(水)

17:00-18:00   数理科学研究科棟(駒場) 117号室
劉 元旻 氏 (東京大学大学院数理科学研究科)
p-Adic cohomology over Laurent series rings and weight spectral sequences of strictly semistable schemes (日本語 (Japanese))
[ 講演概要 ]
Let $k$ be a field of characteristic $p > 0$. Berthelot defined the rigid cohomology for varieties over $k$ after the work of Monsky-Washnitzer and Dwork. He also consider the theory of arithmetic D-modules which should be the coefficients for rigid cohomology. His work is generalized by Lazda-Pál and Caro to theories over $k((t))$. I will talk about their generalization and the construction of weight spectral sequence of strictly semistable schemes using arithmetic D-modules.