Number Theory Seminar
Seminar information archive ~10/29|Next seminar|Future seminars 10/30~
| Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
|---|---|
| Organizer(s) | Naoki Imai, Shane Kelly |
Future seminars
2025/11/04
17:00-18:00 Room #117 (Graduate School of Math. Sci. Bldg.)
Ryomei Iwasa (University of Copenhagen)
Descent and pro-excision
Ryomei Iwasa (University of Copenhagen)
Descent and pro-excision
[ Abstract ]
The theme of this talk is descent and excision of cohomology theories of schemes. We will start with a discussion of the canonical topology on spectral schemes. Unlike on classical schemes, this topology includes many other types of covers, such as h-covers. Then I will explain that THH and TC satisfy descent with respect to the canonical topology, which generalizes the flat descent by Bhatt—Morrow—Scholze. This in turn implies the cdh descent of K-theory on spectral schemes, despite its failure on classical schemes. Furthermore, this implies the cdh pro-excision of K-theory on spectral schemes, which generalizes the derived case by Kelly—Saito—Tamme (the original noetherian case is due to Kerz—Strunk—Tamme). Our proof of the cdh pro-excision is quite different from the previous ones and is more algebraic in nature. The results presented here are based on discussions with Antieau, Burklund, and Krause.
The theme of this talk is descent and excision of cohomology theories of schemes. We will start with a discussion of the canonical topology on spectral schemes. Unlike on classical schemes, this topology includes many other types of covers, such as h-covers. Then I will explain that THH and TC satisfy descent with respect to the canonical topology, which generalizes the flat descent by Bhatt—Morrow—Scholze. This in turn implies the cdh descent of K-theory on spectral schemes, despite its failure on classical schemes. Furthermore, this implies the cdh pro-excision of K-theory on spectral schemes, which generalizes the derived case by Kelly—Saito—Tamme (the original noetherian case is due to Kerz—Strunk—Tamme). Our proof of the cdh pro-excision is quite different from the previous ones and is more algebraic in nature. The results presented here are based on discussions with Antieau, Burklund, and Krause.


Text only print
Full screen print

