Lie群論・表現論セミナー

過去の記録 ~01/28次回の予定今後の予定 01/29~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室
担当者 小林俊行
セミナーURL https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

過去の記録

2009年12月22日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
西山享 氏 (青山学院大学)
既約表現の隨伴多様体は余次元1で連結か?--- 証明の破綻とその背景

[ 講演概要 ]

既約 Harish-Chandra $ (g, K) $ 加群の原始イデアルの隨伴多様体が既約であって、ただ一つの冪零隨伴軌道 $ O^G $ の閉包になることはよく知られている(Joseph, Borho)。
一方、HC加群の隨伴多様体は必ずしも既約でないが、その既約成分は $ O^G $ の $ K $-等質ラグランジュ部分多様体の閉包になる。
それらの既約成分は余次元1で連結であることをいくつかの集会で報告したが、その証明には初等的な誤りがあった。セミナーでは、証明の元になった Vogan の定理の紹介(もちろん間違っていない)と、それを拡張する際になぜ証明が破綻するかについてお話しする。(今のところ証明修復の目処は立っていない。)
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2009年12月15日(火)

17:00-18:00   数理科学研究科棟(駒場) 056号室
トポロジー火曜セミナーと合同です。この週に砂田利一氏の集中講義が行われます
砂田利一氏 氏 (明治大学理工学部)
Open Problems in Discrete Geometric Analysis
[ 講演概要 ]
Discrete geometric analysis is a hybrid field of several traditional disciplines: graph theory, geometry, theory of discrete groups, and probability. This field concerns solely analysis on graphs, a synonym of "1-dimensional cell complex". In this talk, I shall discuss several open problems related to the discrete Laplacian, a "protagonist" in discrete geometric analysis. Topics dealt with are 1. Ramanujan graphs, 2. Spectra of covering graphs, 3. Zeta functions of finitely generated groups.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar2009.html#20091215sunada

2009年11月04日(水)

16:30-18:00   数理科学研究科棟(駒場) 128号室
同じ週の木・金に柏キャンパスで開催されるIMPU workshopの講演内容に関係しています。 http://faculty.ms.u-tokyo.ac.jp/~topology/IPMU/workshop.html
Gert Heckman 氏 (IMAPP, Faculty of Science, Radboud University Nijmegen)
Birational Hyperbolic Geometry
[ 講演概要 ]
We study compactifications for complex ball quotients.
We first recall the Satake-Bailey-Borel compactification and the Mumford resolution.
Then we discuss compactifications of ball quotients minus a totally geodesic divisor.
These compactifications turn up for a suitable class of period maps.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2009年10月15日(木)

16:30-18:00   数理科学研究科棟(駒場) 122号室
土岡俊介 氏 (RIMS, Kyoto University)
Hecke-Clifford superalgebras and crystals of type $D^{(2)}_{l}$
[ 講演概要 ]
It is known that we can sometimes describe the representation theory of ``Hecke algebra'' by ``Lie theory''. Famous examples that involve the Lie theory of type $A^{(1)}_n$ are Lascoux-Leclerc-Thibon's interpretation of Kleshchev's modular branching rule for the symmetric groups and Ariki's theorem generalizing Lascoux-Leclerc-Thibon's conjecture for the Iwahori-Hecke algebras of type A.

Brundan and Kleshchev showed that some parts of the representation theory of the affine Hecke-Clifford superalgebras and its finite-dimensional ``cyclotomic'' quotients are controlled by the Lie theory of type $A^{(2)}_{2l}$ when the quantum parameter $q$ is a primitive $(2l+1)$-th root of unity.
In this talk, we show that similar theorems hold when $q$ is a primitive $4l$-th root of unity by replacing the Lie theory of type $A^{(2)}_{2l}$ with that of type $D^{(2)}_{l}$.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2009年10月13日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
小寺諒介 氏 (東京大学)
Extensions between finite-dimensional simple modules over a generalized current Lie algebra

[ 講演概要 ]
$\\mathfrak{g}$を$\\mathbb{C}$上の有限次元半単純Lie代数,$A$を有限生成可換$\\mathbb {C}$代数とする.
テンソル積$A \\otimes \\mathfrak{g}$に自然にLie代数の構造を与えたものを一般化されたカレントLie代数と呼ぶ.
一般化されたカレントLie代数の任意の2つの有限次元既約表現に対して,その1次のExt群を完全に決定することができたので,その結果について発表する.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2009年08月12日(水)

10:00-16:30   数理科学研究科棟(駒場) 002号室
Sigurdur Helgason 氏 (MIT) 10:00-11:00
Radon Transform and some Applications
Fulton G. Gonzalez 氏 (Tufts University) 11:20-12:20
Multitemporal Wave Equations: Mean Value Solutins
Angela Pasquale 氏 (Universite Metz) 14:00-15:00
Analytic continuation of the resolvent of the Laplacian in the Euclidean settings
[ 講演概要 ]
We discuss the analytic continuation of the resolvent of the Laplace operator on symmetric spaces of the Euclidean type and some generalizations to the rational Dunkl setting.
Henrik Schlichtkrull 氏 (University of Copenhagen) 15:30-16:30
Decay of smooth vectors for regular representations
[ 講演概要 ]
Let $G/H$ be a homogeneous space of a Lie group, and consider the regular representation $L$ of $G$ on $E=L^p(G/H)$. A smooth vector for $L$ is a function $f$ in $E$ such that $g$ mapsto $L(g)f$ is smooth, $G$ to $E$. We investigate circumstances under which all such functions decay at infinity (jt with B. Krotz)

2009年06月15日(月)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Vladimir P. Kostov 氏 (Nice大学)
On the Schur-Szeg\\"o composition of polynomials
[ 講演概要 ]
The Schur-Szeg\\"o composition of the degree $n$ polynomials $P:=\\sum_{j=0}^na_jx^j$ and $Q:=\\sum_{j=0}^nb_jx^j$ is defined by the formula $P*Q:=\\sum_{j=0}^na_jb_jx^j/C_n^j$ where $C_n^j=n!/j!(n-j)!$. Every degree $n$ polynomial having one of its roots at $-1$ (i.e. $P=(x+1)(x^{n-1}+c_1x^{n-2}+\\cdots +c_{n-1})$) is representable as a Schur-Szeg\\"o composition of $n-1$ polynomials of the form $(x+1)^{n-1}(x+a_i)$ where the numbers $a_i$ are uniquely defined up to permutation. Denote the elementary symmetric polynomials of the numbers $a_i$ by $\\sigma_1$, $\\ldots$, $\\sigma_{n-1}$. The talk will focus on some properties of the affine mapping

$$(c_1,\\ldots ,c_{n-1})\\mapsto (\\sigma_1,\\ldots ,\\sigma_{n-1})$$

2009年02月03日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Gombodorj Bayarmagnai 氏 (東京大学数理科学研究科)
The (g,K)-module structure of principal series and related Whittaker functions of SU(2,2)
[ 講演概要 ]
In this talk the basic object will be the principal series representataion of $SU(2, 2)$,
parabolically induced by the minimal parabolic subgroup. We discuss about the $(\\mathfrak g,K)$-module structure on that type of principal series explicitely, and provide various integral expressions of some smooth Whittaker functions with certain $K$-types.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2009年01月15日(木)

13:30-17:20   数理科学研究科棟(駒場) 050号室
大島利雄教授還暦記念研究集会
柏原正樹 氏 (京都大学数理解析研究所) 13:30-14:30
Quantization of complex manifolds
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/index.files/oshima60th200901.html
小林俊行 氏 (東京大学大学院数理科学研究科) 15:00-16:00
Global geometry on locally symmetric spaces — beyond the Riemannian case
[ 講演概要 ]
The local to global study of geometries was a major trend of 20th century geometry, with remarkable developments achieved particularly in Riemannian geometry.
In contrast, in areas such as Lorentz geometry, familiar to us as the space-time of relativity theory, and more generally in pseudo-Riemannian geometry, as well as in various other kinds of geometry (symplectic, complex geometry, ...), surprising little is known about global properties of the geometry even if we impose a locally homogeneous structure.

In this talk, I plan to give an exposition on the recent developments on the question about the global natures of locally non-Riemannian homogeneous spaces, with emphasis on the existence problem of compact forms, rigidity and deformation.
大島利雄 氏 (東京大学大学院数理科学研究科) 16:20-17:20
Classification of Fuchsian systems and their connection problem
[ 講演概要 ]
We explain a classification of Fuchsian systems on the Riemann sphere together with Katz's middle convolution, Yokoyama's extension and their relation to a Kac-Moody root system discovered by Crawley-Boevey.
Then we present a beautifully unified connection formula for the solution of the Fuchsian ordinary differential equation without moduli and apply the formula to the harmonic analysis on a symmetric space.

2009年01月12日(月)

16:30-18:00   数理科学研究科棟(駒場) 126号室
西岡斉治 氏 (東京大学大学院数理科学研究科博士課程)
代数的差分方程式の可解性と既約性
[ 講演概要 ]
差分代数の理論を使って,代数的差分方程式の代数函数解や超幾
何函数解の非存在や,存在する場合の特殊解の分類をする。

2008年12月04日(木)

17:00-18:00   数理科学研究科棟(駒場) 056号室
いつもと開始時刻および場所が違いますのでご注意ください
Genkai Zhang 氏 (Chalmers and Gothenburg University)
Realization of quanternionic discrete series as spaces of H-holomorphic
functions
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年12月02日(火)

17:00-18:00   数理科学研究科棟(駒場) 056号室
トポロジー火曜セミナーと合同で開催します. またいつもと開催時刻および開催場所が違います。
金井雅彦 氏 (名古屋大学)
消滅と剛性
[ 講演概要 ]
The aim of my talk is to reveal an unforeseen link between the classical vanishing theorems of Matsushima and Weil, on the one hand, and rigidity of the Weyl chamber flow, a dynamical system arising from a higher-rank noncompact Lie group, on the other.

The connection is established via "transverse extension theorems": Roughly speaking, they claim that a tangential 1- form of the orbit foliation of the Weyl chamber flow that is tangentially closed (and satisfies a certain mild additional condition) can be extended to a closed 1- form on the whole space in a canonical manner. In particular, infinitesimal rigidity of the orbit foliation of the Weyl chamber flow is proved as an application.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年11月25日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
吉野太郎 氏 (東工大)
$\\mathbb R^n$への$\\mathbb R^2$の固有な作用と周期性
[ 講演概要 ]
Consider $\\R^2$ actions on $\\R^n$ which is free, affine and unipotent. Our concern here is to answer the following question:

"Does the quotient topology admits a manifold structure?"

Under some weak assumption, we classify all actions up to conjugate, and give a complete answer to the question.

If Lipsman's conjecture were true, all of the answer should be affirmative.

But, we shall find a unique action which gives a negative answer for each $n\\geq 5$. And, we also find a periodicity on such counterexamples.

As a key lemma, we use "proper analogue" of the five lemma on
exact sequence.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年11月18日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Jorge Vargas 氏 (FAMAF-CIEM, C\'ordoba)
Liouville measures and multiplicity formulae for admissible restriction of Discrete Series
[ 講演概要 ]
Let $H \\subset G$ be reductive matrix Lie groups. We fix a square integrable irreducible representation $\\pi$ of $G.$
Let $\\Omega $ denote the coadjoint orbit of the Harish-Chandra parameter of $\\pi.$

Assume $\\pi$ restricted to $H$ is admissible. In joint work with Michel Duflo, by means of "discrete" and "continuos" Heaviside functions we relate the multiplicity of each irreducible $H-$factor of $\\pi$ restricted to $H$ and push forward to $\\mathfrak h^\\star$ of the Liouville measure for $\\Omega.$ This generalizes work of Duflo-Heckman-Vergne.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年10月28日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Joachim Hilgert 氏 (Paderborn University)
Chevalley's restriction theorem for supersymmetric Riemannian symmetric spaces
[ 講演概要 ]
We start by explaining the concept of a supersymmetric Riemannian symmetric spaces and present the examples studied by Zirnbauer in the context of universality classes of random matrices. For these classes we then show how to formulate and prove an analog of Chevalley's restriction theorem for invariant super-functions.

This is joint work with A. Alldridge (Paderborn) and M. Zirnbauer (Cologne)
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年10月21日(火)

17:00-18:00   数理科学研究科棟(駒場) 126号室
いつもと開始時刻が違います。また同氏による集中講義がこの週に行われます。
落合啓之 氏 (名古屋大学)
Invitation to Atlas combinatorics
[ 講演概要 ]
半単純リー群のユニタリ表現の分類を手がける Atlas project(J. Adams, D. Vogan らが主催)では、実簡約(real reductive)線形代数群の admissible 表現をパラメトライズし、それに関するいくつかのプログラムが公開されています。ウェブサイトは www.liegroups.org.
現在、そのメインとなるものは Kazhdan-Lusztig-Vogan 多項式です。リー群として複素単純リー群を実リー群と見なしたケースが、通常の Kazhdan-Lusztig 理論に一致し、それを、ある一方向に拡張したのがここで扱われる KLV 理論と考えられます。

この講演では、リー群に関する背景説明などは軽く済ませ、Atlas で公開されているプログラムにおける方言、特に入出力の読み方を通常の言葉に言い換えることで、
プログラムを使ってもらう入り口での障壁を減らしたいと考えています。
ふむ、なかなか、使えるな、自分もインストールしてみようか、と思ってもらえれば、成功です。

なお、サーベイトークなので私のオリジナルな結果は含まれていません。また、計算機を使ってデモをする予定です。京都では計算機と板書の切り替えでばたばたしたので、照準を絞って慌てないように話したいと思います。
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年10月14日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Jan Moellers 氏 (Paderborn University)
The Dirichlet-to-Neumann map as a pseudodifferential
operator
[ 講演概要 ]
Both Dirichlet and Neumann boundary conditions for the Laplace equation are of fundamental importance in Mathematics and Physics. Given a compact connected Riemannian manifold $M$ with boundary $\\partial M$ the Dirichlet-to-Neumann operator $\\Lambda_g$ maps Dirichlet boundary data $f$ to the corresponding Neumann boundary data $\\Lambda_g f =(\\partial_\\nu u)|_{\\partial M}$ where $u$ denotes the unique solution to the Dirichlet problem $\\laplace_g u=0$ in $M$, $u|_{\\partial M} = f$.
The main statement is that this operator is a first order elliptic pseudodifferential operator on the boundary $\\partial M$.

We will first give a brief overview of how to define the Dirichlet-to-Neumann operator as a map $\\Lambda_g:H^{1/2}(\\partial M)\\longrightarrow H^{-1/2}(\\partial M)$ between Sobolev spaces. In order to show that it is actually a pseudodifferential operator we introduce tangential pseudodifferential operators. This allows us to derive a
microlocal factorization of the Laplacian near boundary points. Together with a regularity statement for the heat equation this will finally give the main result.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年09月08日(月)

11:00-12:00   数理科学研究科棟(駒場) 126号室
Federico Incitti 氏 (ローマ第 1 大学)
Dyck partitions, quasi-minuscule quotients and Kazhdan-Lusztig polynomials
[ 講演概要 ]
Kazhdan-Lusztig polynomials were first defined by Kazhdan and Lusztig in [Invent. Math., 53 (1979), 165-184]. Since then, numerous applications have been found, especially to representation theory and to the geometry of Schubert varieties. In 1987 Deodhar introduced parabolic analogues of these polynomials. These are related to their ordinary counterparts in several ways, and also play a direct role in other areas, including geometry of partial flag manifolds and the theory of Macdonald polynomials.

In this talk I study the parabolic Kazhdan-Lusztig polynomials of the quasi-minuscule quotients of the symmetric group. More precisely, I will first show how these quotients are closely related to ``rooted partitions'' and then I will give explicit, closed combinatorial formulas for the polynomials. These are based on a special class of rooted partitions the ``rooted-Dyck'' partitions, and imply that they are always (either zero or) a power of $q$.

I will conclude with some enumerative results on Dyck and rooted-Dyck partitions, showing a connection with random walks on regular trees.

This is partly based on a joint work with Francesco Brenti and Mario Marietti.
[ 参考URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008年07月29日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
小木曽 岳義 氏 (城西大学)
Clifford代数の表現から作られる局所関数等式を満たす多項式とそれに付随する空間について(佐藤文広氏との共同研究)
[ 講演概要 ]
概均質ベクトル空間の理論の基本定理(局所関数等式)は、大雑把に言うと、正則概均質ベクトル空間の相対不変式の複素ベキのFourier変換が双対概均質ベクトル空間の相対不変式の複素ベキにガンマ因子をかけたものと一致することを主張している。
この講演では、概均質ベクトル空間の相対不変式ではないにもかかわらず、その複素ベキが同種の局所関数等式を満たすような多項式が、Clifford代数の表現より構成できることを報告する。

2008年07月15日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
廣惠 一希 氏 (東大数理)
GL(4,R)の退化主系列表現の一般Whittaker関数
[ 講演概要 ]
$GL(n,R)$の退化球主系列表現の一般Whittaker模型の空間は,対称空間$GL(n,R)/O(n)$上の$C^\\infty$級関数の中で,ある微分作用素達のkernelとして特徴付けられる.この微分作用素達は,大島利雄氏による退化主系列表現に対するPoisson変換の像の特徴付けに用いられたものであり,その明示的な表示が氏によって得られている.また,こうしたkernel定理は山下博氏のユニタリ最低ウエイト加群の一般Whittaker模型に対する定理の類似にあたる.こういった背景の下,$GL(4,R)$の退化主系列表現に対し、いくつかの具体例を考えたい.そこでは一般Whittaker模型は一変数変形Bessel関数、Hornの二変数合流型超幾何関数によって実現される.
[ 参考URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008年07月08日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
直井 克之 氏 (東大数理)
construction of extended affine Lie algebras from multiloop Lie algebras
[ 講演概要 ]
affine Lie algebra の Kac-Moody Lie algebra とは異なる一般化として、extended affine Lie algebra と呼ばれる Lie algebra の class を考える。
ほとんどの extended affine Lie algebra は、有限次元 simple Lie algebra と、有限個の互いに可換な有限位数自己同型を用いて構成できることがすでに知られている。
この講演では、上の構成によって得られる extended affine Lie algebra がどのような場合に(適当な意味で)同型となるか、という問題に関する結果をお話ししたい。
[ 参考URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008年07月01日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
奥田 隆幸 氏 (東大数理)
不変式のzeta多項式の零点と、微分作用素の関係について
[ 講演概要 ]
MacWilliams変換と呼ばれる変換で不変な複素2変数斉次多項式に対して、zeta多項式と呼ばれる複素1変数多項式を定義する。
TypeIV extremal と呼ばれる不変式の無限列に対し、deg = 0 (mod 6) の場合には、対応する全ての zeta多項式の零点が同一円周上に乗るという事が証明されているが、deg = 2,4 (mod 6) の場合は未解決であった。
この講演では、不変式に対する微分作用素を用いて、deg = 4 (mod6) の場合にも全てのzeta多項式の零点が同一円周上に乗るということを示したい。

2008年06月03日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
示野 信一 氏 (岡山理科大)
Matrix valued commuting differential operators with B2 symmetry
[ 講演概要 ]
B2 型のWeyl群の作用による対称性を持つ2次正方行列値の2階の可換な微分作用素を構成した。
作用素は Iida (Publ. Res. Inst. Math. Sci. Kyoto Univ. 32 (1996)) により計算された Sp(2,R)/U(2) の等質ベクトル束上の不変微分作用素の動径成分を特別な場合として含み、係数は楕円関数を用いて表される。
講演では、群の場合、可換な作用素の構成、spin Calogero-Sutherland 模型との関係について述べる。
[ 参考URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008年05月27日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
笹木集夢 氏 (早稲田大学)
Visible actions on multiplicity-free spaces
[ 講演概要 ]
The holomorphic action of a Lie group G on a complex manifold D is called strongly visible if there exist a real submanifold S such that D':=G・S is open in D and an anti-holomorphic diffeomorphism σ which is an identity map on S and preserves each G-orbit in D'.
In this talk, we treat the case where D is a multiplicity-free space V of a connected complex reductive Lie group G(C), and show that the action of a compact real form of G(C) on V is strongly visible.
[ 参考URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008年05月20日(火)

16:45-18:15   数理科学研究科棟(駒場) 126号室
吉野太郎 氏 (東京工業大学)
Lipsman予想の反例と代数多様体の特異点について
[ 講演概要 ]
リー群$G$が多様体$M$に作用しているとき, その商空間$G\\backspace M$のハウスドルフ性は, 不連続群論の研究において重要である. 特に, ベキ零リー群が線型空間にアファインかつ自由に作用するとき, 商位相は常にハウスドルフであるとLipsmanは予想した.
しかし, この予想には反例があり, 商位相は必ずしもハウスドルフでない.
この講演では, この非ハウスドルフ性を`可視化'したい. より正確には, $M$への$G$作用から, 自然に代数多様体$V$が定義され, $V$の特異点が商位相の非ハウスドルフ性に対応することを見る.
[ 参考URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

< 前へ 12345678 次へ >