Lie群論・表現論セミナー

過去の記録 ~05/01次回の予定今後の予定 05/02~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室
担当者 小林俊行
セミナーURL https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2025年03月21日(金)

17:00-18:00   数理科学研究科棟(駒場) online号室
Wentao Teng 氏 (東大数理)
A positive product formula of integral kernels of $k$-Hankel transforms (English)
[ 講演概要 ]
Let $R$ be a root system in $\mathbb R^N$ and $G$ be the finite subgroup generated by the reflections associated to the root system.
We establish a positive radial product formula for the integral kernels $B_{k,1}(x,y)$ of $(k,1)$-generalized Fourier transforms (or the $k$-Hankel transforms) $F_{k,1}$
$$B_{k,1}(x,z)j_{2\left\langle k\right\rangle+N-2}\left(2\sqrt{t\left|z\right|}\right)=\int_{\mathbb R^N} B_{k,1}(\xi,z)\,d\sigma_{x,t}^{k,1}(\xi),$$
where $j_{\lambda}$ is the normalized Bessel function, and $\sigma_{x,t}^{k,1}(\xi)$ is the unique probability measure. Such a product formula is equivalent to the following representation of the generalized spherical mean operator $f\mapsto M_f,\;f\in C_b(\mathbb{R}^N)$ in $(k,1)$-generalized Fourier analysis
\begin{align*} M_f(x,t)=\int_{\mathbb{R}^N}f\,d\sigma_{x,t}^{k,1},\;(x,t)\in\mathbb{R}^N\times{\mathbb{R}}_+.\end{align*}
We will then analyze the representing measure $\sigma_{x,t}^{k,1}(\xi)$ and show that the support of the measure is contained in
$$\left\{\xi\in\mathbb{R}^N:\sqrt{\vert\xi\vert}\geq\vert\sqrt{\vert x\vert}-\sqrt t\vert\right\}\cap\left(\bigcup_{g\in G}\{\xi\in\mathbb{R}^N:d(\xi,gx)\leq\sqrt t\}\right),$$
where $d\left(x,y\right)=\sqrt{\left|x\right|+\left|y\right|-\sqrt{2\left(\left|x\right|\left|y\right|+\left\langle x,y\right\rangle\right)}}$.
Based on the support of the representing measure $\sigma_{x,t}^{k,1}$, we will get a weak Huygens's principle for the deformed wave equation in $(k,1)$-generalized Fourier analysis.
Moreover, for $N\geq 2$, if we assume that $F_{k,1}\left(\mathcal S(\mathbb{R}^N)\right)$ consists of rapidly decreasing functions at infinity, then we get two different results on $\text{supp}\sigma_{x,t}^{k,1}$, which indirectly denies such assumption.