Processing math: 100%

複素解析幾何セミナー

過去の記録 ~06/26次回の予定今後の予定 06/27~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2017年10月16日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
須川 敏幸 氏 (東北大学)
Characterizations of hyperbolically k-convex domains in terms of hyperbolic metric
[ 講演概要 ]
It is known that a plane domain X with hyperbolic metric hX=hX(z)|dz| of constant curvature 4 is (Euclidean) convex if and only if hX(z)dX(z)1/2, where dX(z) denotes the Euclidean distance from a point z in X to the boundary of X. We will consider spherical and hyperbolic versions of this result. More generally, we consider hyperbolic k-convexity (in the sense of Mejia and Minda) in the same line. A key is to observe a detailed behaviour of the hyperbolic density hX(z) near the boundary.