Seminar on Geometric Complex Analysis

Seminar information archive ~10/14Next seminarFuture seminars 10/15~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2017/10/16

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Toshiyuki Sugawa (Tohoku University)
Characterizations of hyperbolically $k$-convex domains in terms of hyperbolic metric
[ Abstract ]
It is known that a plane domain $X$ with hyperbolic metric $h_X=h_X(z)|dz|$ of constant curvature $-4$ is (Euclidean) convex if and only if $h_X(z)d_X(z)\ge 1/2$, where $d_X(z)$ denotes the Euclidean distance from a point $z$ in $X$ to the boundary of $X$. We will consider spherical and hyperbolic versions of this result. More generally, we consider hyperbolic $k$-convexity (in the sense of Mejia and Minda) in the same line. A key is to observe a detailed behaviour of the hyperbolic density $h_X(z)$ near the boundary.