代数幾何学セミナー

過去の記録 ~05/01次回の予定今後の予定 05/02~

開催情報 金曜日 13:30~15:00 数理科学研究科棟(駒場) 118号室
担当者 權業 善範、河上 龍郎 、榎園 誠 

過去の記録

2015年10月26日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Lawrence Ein 氏 (University of Illinois at Chicago)
Asymptotic syzygies and the gonality conjecture (English)
[ 講演概要 ]
We'll discuss my joint work with Lazarsfeld on the gonality conjecture about the syzygies of a smooth projective curve when it is embedded into the projective space by the complete linear system of a sufficiently very ample line bundles. We'll also discuss some results about the asymptotic syzygies f higher dimensional varieties.

2015年10月05日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Evangelos Routis 氏 (IPMU)
Weighted Compactifications of Configuration Spaces (English)
[ 講演概要 ]
In the early 90's, Fulton and MacPherson provided a natural and beautiful way of compactifying the configuration space F(X,n) of n distinct labeled points on an arbitrary nonsingular variety. In this talk, I will present an alternate compactification of F(X,n), which generalizes the work of Fulton and MacPherson and is parallel to Hassett's weighted generalization of the moduli space of n-pointed stable curves. After discussing its main properties, I will give a presentation of its intersection ring and as an application, I will describe the intersection ring of Hassett's spaces in genus 0. Finally, as time permits, I will discuss some additional moduli problems associated with weighted compactifications.

2015年06月29日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Manfred Lehn 氏 (Mainz/RIMS)
Twisted cubics and cubic fourfolds (English)
[ 講演概要 ]
The moduli scheme of generalised twisted cubics on a smooth
cubic fourfold Y non containing a plane is smooth projective of
dimension 10 and admits a contraction to an 8-dimensional
holomorphic symplectic manifold Z(Y). The latter is shown to be
birational to the Hilbert scheme of four points on a K3 surface if
Y is of Pfaffian type. This is a report on joint work with C. Lehn,
C. Sorger and D. van Straten and with N. Addington.

2015年06月22日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Martí Lahoz 氏 (Institut de Mathématiques de Jussieu )
Rational cohomology tori
(English)
[ 講演概要 ]
Complex tori can be topologically characterised among compact Kähler
manifolds by their integral cohomology ring. I will discuss the
structure of compact Kähler manifolds whose rational cohomology ring is
isomorphic to the rational cohomology ring of a torus and give some
examples. This is joint work with Olivier Debarre and Zhi Jiang.
[ 参考URL ]
http://webusers.imj-prg.fr/~marti.lahoz/

2015年06月15日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Christopher Hacon 氏 (University of Utah/RIMS)
Boundedness of the KSBA functor of
SLC models (English)
[ 講演概要 ]
Let $X$ be a canonically polarized smooth $n$-dimensional projective variety over $\mathbb C$ (so that $\omega _X$ is ample), then it is well-known that a fixed multiple of the canonical line bundle defines an embedding of $X$ in projective space. It then follows easily that if we fix certain invariants of $X$, then $X$ belongs to finitely many deformation types. Since canonical models are rarely smooth, it is important to generalize this result to canonically polarized $n$-dimensional projectivevarieties with canonical singularities. Moreover, since these varieties specialize to non-normal varieties it is also important to generalize this result to semi-log canonical pairs. In this talk we will explain a strong version of the above result that applies to semi-log canonical pairs.This is joint work with C. Xu and J. McKernan
[ 参考URL ]
http://www.math.utah.edu/~hacon/

2015年06月01日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
石川大蔵 氏 (早稲田)
Rank 2 weak Fano bundles on cubic 3-folds (日本語)
[ 講演概要 ]
A vector bundle on a projective variety is called weak Fano if its
projectivization is a weak Fano manifold. This is a generalization of
Fano bundles.
In this talk, we will obtain a classification of rank 2 weak Fano
bundles on a nonsingular cubic hypersurface in a projective 4-space.
Specifically, we will show that there exist rank 2 indecomposable weak
Fano bundles on it.

2015年05月25日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
松本雄也 氏 (東大数理)
Good reduction of K3 surfaces (日本語 or English)
[ 講演概要 ]
We consider degeneration of K3 surfaces over a 1-dimensional base scheme
of mixed characteristic (e.g. Spec of the p-adic integers).
Under the assumption of potential semistable reduction, we first prove
that a trivial monodromy action on the l-adic etale cohomology group
implies potential good reduction, where potential means that we allow a
finite base extension.
Moreover we show that a finite etale base change suffices.
The proof for the first part involves a mixed characteristic
3-dimensional MMP (Kawamata) and the classification of semistable
degeneration of K3 surfaces (Kulikov, Persson--Pinkham, Nakkajima).
For the second part, we consider flops and descent arguments. This is a joint work with Christian Liedtke.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~ymatsu/index_j.html

2015年05月18日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Will Donovan 氏 (IPMU)
Twists and braids for general 3-fold flops (English)
[ 講演概要 ]
When a 3-fold contains a floppable rational curve, a theorem of Bridgeland provides a derived equivalence between the 3-fold and its flop. I will discuss recent joint work with Michael Wemyss, showing that these flop functors satisfy Coxeter-type braid relations. Using this result, we construct an action of a braid-type group on the derived category of the 3-fold. This group arises from the topology of a certain simplicial hyperplane arrangement, determined by the local geometry of the curve. I will give examples and explain key elements in the construction, including the noncommutative deformations of curves introduced in our previous work.
[ 参考URL ]
http://db.ipmu.jp/member/personal/4007en.html

2015年05月11日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
佐野太郎 氏 (京都大学)
Deformations of weak Fano varieties (日本語 or English)
[ 講演概要 ]
A smooth projective variety often has obstructed deformations.
Nevertheless, important varieties such as Fano varieties and
Calabi-Yau varieties have unobstructed deformations.
In this talk, I explain about unobstructedness of deformations of weak
Fano varieties, in particular a weak Q-Fano 3-fold.
I also present several examples to show delicateness of this unobstructedness.
[ 参考URL ]
https://sites.google.com/site/tarosano222/

2015年04月27日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
大内元気 氏 (東大数理・IPMU)
Lagrangian embeddings of cubic fourfolds containing a plane (日本語)
[ 講演概要 ]
4次元3次超曲面は、複素シンプレクティック多様体の構成、有理性やK3曲面との関係などという観点から研究されている。1985年BeauvilleとDonagiは、4次元3次超曲面上の直線のなすFanoスキームがK3曲面上の2点のHilbertスキームと変形同値な複素シンプレクティック多様体であることを示した。2013年Lehnらは、平面を含まない4次元3次超曲面は8次元複素シンプレクティックにラグランジュ部分多様体として埋め込めることを示した。この8次元複素シンプレクティック多様体は4次元3次超曲面上のねじれ3次曲線全体を考えることにより得られる。

本講演では、4次元3次超曲面Xが平面を含む場合にXをラグランジュ部分多様体として含む8次元複素シンプレクティック多様体をあるねじれK3曲面上の連接層の導来圏の安定対象のモジュライ空間として構成する。構成には、Kuznetsovが構成したねじれK3曲面上の連接層の導来圏からX上の連接層の導来圏への充満忠実関手を用いる。

2015年04月20日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
金光秋博 氏 (東大数理)
Fano 5-folds with nef tangent bundles (日本語)
[ 講演概要 ]
Campana と Peternell は, ネフな接束をもつ Fano 多様体は有理等質多様体で
あると予想した.
渡辺究によって, 5 次元かつ Picard 数が 2 以上のとき, この予想は正しいこ
とが示されている.
一方で, Picard 数が 1 のとき, その上の有理曲線の最小反標準次数 (擬指数)
によって場合分けすることができて, 趙・宮岡・Shepherd-Barron, 宮岡, Hwang,
Mok らの結果から, 5 次元の場合には, 擬指数が 4 であるときを除けば有理等
質多様体であるということがわかっていた.

本講演では, 極小有理曲線族を用いて, 擬指数が 4 である場合について任意次
元で調べる.
その結果として 5 次元のときには Campana と Peternell の予想が正しいこと
が従う.

2015年04月13日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Frédéric Campana 氏 (Université de Lorraine)
An orbifold version of Miyaoka's semi-positivity theorem and applications (English)
[ 講演概要 ]
This `orbifold' version of Miyaoka's theorem says that if (X,D)
is a projective log-canonical pair with K_X+D pseudo-effective,
then its 'cotangent' sheaf $¥Omega^1(X,D)$ is generically semi-positive.
The definitions will be given. The original proof of Miyaoka, which
mixes
char 0 and char p>0 arguments could not be adapted. Our proof is in char
0 only.

A first consequence is when (X,D) is log-smooth with reduced boudary D,
in which case the cotangent sheaf is the classical Log-cotangent sheaf:
if some tensor power of $¥omega^1_X(log(D))$ contains a 'big' line
bundle, then K_X+D is 'big' too. This implies, together with work of
Viehweg-Zuo,
the `hyperbolicity conjecture' of Shafarevich-Viehweg.

The preceding is joint work with Mihai Paun.

A second application (joint work with E. Amerik) shows that if D is a
non-uniruled smooth divisor in aprojective hyperkaehler manifold with
symplectic form s,
then its characteristic foliation is algebraic only if X is a K3 surface.
This was shown previously bt Hwang-Viehweg assuming D to be of general
type. This result has some further consequences.

2015年01月26日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Jungkai Chen 氏 (National Taiwan University)
Positivity in varieties of maximal Albanese dimension (ENGLISH)
[ 講演概要 ]
Given a variety of maximal Albanese dimension, it is known that the holomorphic Euler characteristic is non-negative. It is an interesting question to characterize varieties with vanishing Euler characteristic.

In our previous work (jointly with Debarre and Jiang), we prove that Ein-Lazarsgfeld's example is essentially the only variety of maximal Albanese and Kodaira dimension with vanishing Euler characteristic in dimension three. In the recent joint work with Jiang, we prove a decomposition theorem for the push-forward of canonical sheaf. As a consequence, we are able to generalized our previous characterization. The purpose of this talk is give a survey of these two works.

2015年01月19日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
山岸 亮 氏 (京都大学理学部)
Crepant resolutions of Slodowy slice in nilpotent orbit closure in sl_N(C) (JAPANESE)
[ 講演概要 ]
Nilpotent orbit closures and their intersections with Slodowy slices are typical examples of symplectic varieties. It is known that every crepant resolution of a nilpotent orbit closure is obtained as a Springer resolution. In this talk, we show that every crepant resolution of a Slodowy slice in nilpotent orbit closure in sl_N(C) is obtained as the restriction of a Springer resolution and explain how to count the number of crepant resolutions. The proof of the main results is based on the fact that Slodowy slices can be described as quiver varieties.

2014年12月15日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
三内 顕義 氏 (東京大学数理科学研究科)
A characterization of ordinary abelian varieties in positive characteristic (JAPANESE)
[ 講演概要 ]
This is joint work with Hiromu Tanaka. In this talk, we study F^e_*O_X on a projective variety over the algebraic closed field of positive characteristic. For an ordinary abelian variety X, F^e_*O_X is decomposed into line bundles for every positive integer e. Conversely, if a smooth projective variety X satisfies this property and its Kodaira dimension is non-negative, then X is an ordinary abelian variety.

2014年12月01日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Malte Wandel 氏 (RIMS)
Induced Automorphisms on Hyperkaehler Manifolds (ENGLISH)
[ 講演概要 ]
in this talk I want to report on a joint project with Giovanni Mongardi (Milano). We study automorphisms of hyperkaehler manifolds. All known deformation classes of these manifolds contain moduli spaces of stable sheaves on surfaces. If the underlying surface admits a non-trivial automorphism, it is often possible to transfer this automorphism to a moduli space of sheaves. In this way we obtain a big class of interesting examples of automorphisms of hyperkaehler manifolds. I will present a criterion to 'detect' automorphisms in this class and discuss several applications for the classification of automorphisms of manifolds of K3^[n]- and kummer n-type. If time permits I will try to talk about generalisations to O'Grady's sporadic examples.

2014年10月27日(月)

14:50-16:20   数理科学研究科棟(駒場) 122号室
いつもと開始時間が異なります。
Meng Chen 氏 (Fudan University)
On projective varieties with very large canonical volume (ENGLISH)
[ 講演概要 ]
For any positive integer n>0, a theorem of Hacon-McKernan, Takayama and Tsuji says that there is a constant c(n) so that the m-canonical map is birational onto its image for all smooth projective n-folds and all m>=c(n). We are interested in the following problem "P(n)": is there a constant M(n) so that, for all smooth projective n-fold X with Vol(X)>M(n), the m-canonical map of X is birational for all m>=c(n-1). The answer to “P_n" is positive due to Bombieri when $n=2$ and to Todorov when $n=3$. The aim of this talk is to introduce my joint work with Zhi Jiang from Universite Paris-Sud. We give a positive answer in dimensions 4 and 5.

2014年07月07日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
谷本翔 氏 (Rice University)
Balanced line bundles (JAPANESE)
[ 講演概要 ]
A conjecture of Batyrev and Manin relates arithmetic properties of
varieties with big anticanonical class to geometric invariants; in
particular, counting functions defined by metrized ample line bundles
and the corresponding asymptotics of rational points of bounded height
are interpreted in terms of cones of effective divisors and certain
thresholds with respect to these cones. This framework leads to the
notion of balanced line bundles, whose counting functions, conjecturally,
capture generic distributions of rational points. We investigate
balanced line bundles in the context of the Minimal Model Program, with
special regard to the classification of Fano threefolds and Mori fiber
spaces.
This is joint work with Brian Lehmann and Yuri Tschinkel.

2014年06月30日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
三内顕義 氏 (東京大学数理科学研究科)
Invariant subrings of the Cox rings of K3surfaces by automorphism groups (JAPANESE)
[ 講演概要 ]
Cox rings were introduced by D.Cox and are important rings which appeared in algebraic geometry. One of the main topic related with Cox rings is the finite generation of them. In this talk, we consider the Cox rings of K3 surfaces and answer the following question asked by D. Huybrechts; Are the invariant subrings of the Cox rings of K3 surfaces by automorphism groups finitely generated in general?

2014年06月02日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
中村勇哉 氏 (東京大学数理科学研究科)
On base point free theorem for log canonical three folds over the algebraic closure of a finite field (JAPANESE)
[ 講演概要 ]
We will discuss about the base point free theorem on three-dimensional
pairs defined over the algebraic closure of a finite field.

We know the base point free theorem on arbitrary-dimensional Kawamata
log terminal pairs in characteristic zero. By Birkar and Xu, the base
point free theorem in positive characteristic is known for big line
bundles on three-dimensional Kawamata log terminal pairs defined over
an algebraically closed field of characteristic larger than 5. Over the
algebraic closure of a finite field, a stronger result was proved by Keel.

The purpose of this talk is to generalize the Keel's result. We will
prove the base point free theorem for big line bundles on
three-dimensional log canonical pairs defined over the algebraic closure
of a finite field. This theorem is not valid for another field.

This is joint work with Diletta Martinelli and Jakub Witaszek.

2014年05月12日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Andrés Daniel Duarte 氏 (Institut de Mathématiques de Toulouse)
Higher Nash blowup on normal toric varieties and a higher order version of Nobile's theorem (ENGLISH)
[ 講演概要 ]
The higher Nash blowup of an algebraic variety replaces singular points with limits of certain vector spaces carrying first or higher order data associated to the variety at non-singular points. In the case of normal toric varieties, the higher Nash blowup has a combinatorial description in terms of the Gröbner fan. This description will allows us to prove a higher version of Nobile's theorem in this context: for a normal toric variety, the higher Nash blowup is an isomorphism if and only if the variety is non-singular. We will also present some further observations coming from computational experiments.

2014年04月28日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
Alexandru Dimca 氏 (Institut Universitaire de France )
Syzygies of jacobian ideals and Torelli properties (ENGLISH)
[ 講演概要 ]
Let $C$ be a reduced complex projective plane curve defined by a homogeneous equation $f(x,y,z)=0$. We consider syzygies of the type $af_x+bf_y+cf_z=0$, where $a,b,c$ are homogeneous polynomials and $f_x,f_y,f_z$ stand for the partial derivatives of $f$. In our talk we relate such syzygies with stable or splittable rank two vector bundles on the projective plane, and to Torelli properties of plane curves in the sense of Dolgachev-Kapranov.

2014年02月12日(水)

14:00-17:30   数理科学研究科棟(駒場) 122号室
いつもと曜日・時間が異なります
松村 慎一 氏 (鹿児島大学) 14:00-15:30
An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities (ENGLISH)
[ 講演概要 ]
In this talk, I give an injectivity theorem with multiplier ideal sheaves of singular metrics.
This theorem is a powerful generalization of various injectivity and vanishing theorems.
The proof is based on a combination of the theory of harmonic integrals and the L^2-method for the \\dbar-equation.
To treat transcendental singularities, after regularizing a given singular metric, we study the asymptotic behavior of the harmonic forms with respect to a family of the regularized metrics.
Moreover we obtain L^2-estimates of solutions of the \\dbar-equation, by using the \\check{C}ech complex.
As an application, we obtain a Nadel type vanishing theorem.
Junyan Cao 氏 (KIAS) 16:00-17:30
Ohsawa-Takegoshi extension theorem for K\\"ahler manifolds (ENGLISH)
[ 講演概要 ]
In this talk, we first prove a version of the Ohsawa-Takegoshi
extension theorem valid for on arbitrary K\\"ahler manifolds, and for
holomorphic line bundles equipped with possibly singular metrics. As an
application, we generalise Berndtsson and Paun 's result about the
pseudo-effectivity of the relative canonical bundles to arbitrary
compact K\\"ahler families.

2014年02月03日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
藤田 健人 氏 (京都大学数理解析研究所)
Classification of log del Pezzo surfaces of index three (JAPANESE)
[ 講演概要 ]
Log del Pezzo surfaces constitute an interesting class of rational surfaces and naturally appear in the minimal model program. I will describe an algorithm to classify all the log del Pezzo surfaces of fixed (Q-Gorenstein) index $a$. Especially, I will focus on the case that $a$ is equal to three. This is joint work with Kazunori Yasutake.

2014年01月22日(水)

15:00-16:30   数理科学研究科棟(駒場) 122号室
いつもと曜日・時間が異なります
Thomas Ducat 氏 (University of Warwick)
Divisorial Extractions from Singular Curves in Smooth 3-Folds (ENGLISH)
[ 講演概要 ]
Consider a singular curve C contained in a smooth 3-fold X.
Assuming the existence of a Du Val general elephant S containing C,
I give a normal form for the equations of C in X and an outline of how to
construct a divisorial extraction from this curve. If the general S is
Du Val of type D_{2k}, E_6 or E_7 then I can give some explicit
conditions for the existence of a terminal extraction. A treatment of
the D_{2k+1} case should be possible by similar means.

< 前へ 12345678910111213 次へ >