談話会・数理科学講演会

過去の記録 ~07/13次回の予定今後の予定 07/14~

担当者 足助太郎,寺田至,長谷川立,宮本安人(委員長)
セミナーURL https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html

2021年12月17日(金)

15:30-16:30   オンライン開催
参加登録を締め切りました(12月17日12:00)。
Jun-Muk Hwang 氏 (Center for Complex Geometry, IBS, Korea)
Growth vectors of distributions and lines on projective hypersurfaces (ENGLISH)
[ 講演概要 ]
For a distribution on a manifold, its growth vector is a finite sequence of integers measuring the dimensions of the directions spanned by successive Lie brackets of local vector fields belonging to the distribution. The growth vector is the most basic invariant of a distribution, but it is sometimes hard to compute. As an example, we discuss natural distributions on the spaces of lines covering hypersurfaces of low degrees in the complex projective space. We explain the ideas in a joint work with Qifeng Li where the growth vector is determined for lines on a general hypersurface of degree 4 and dimension 5.