複素解析幾何セミナー

過去の記録 ~09/13次回の予定今後の予定 09/14~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2021年01月18日(月)

10:30-12:00   オンライン開催
濱野佐知子 氏 (大阪市立大)
The hydrodynamic period matrices and closings of an open Riemann surface of finite genus
[ 講演概要 ]
A closing of an open Riemann srface $R$ of finite genus is a shorter name of a closed Riemann surface of the same genus into which $R$ can be embedded by a homology type preserving conformal mapping. We observe the Riemann period matrices of all closings of $R$ in the Siegel upper half space. It is known that every hydrodynamic differential on $R$ yields a closing of $R$ called a hydrodynamic closing. (A hydrodynamic differential is a holomorphic which describes a steady flow on $R$ of an ideal fluid.) We study the period matices induced by hydrodynamic closings of $R$. This is a joint work with Masakazu Shiba.
[ 参考URL ]
https://zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB