Seminar on Geometric Complex Analysis

Seminar information archive ~09/18Next seminarFuture seminars 09/19~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2021/01/18

10:30-12:00   Online
HAMANO Sachiko (Osaka City University)
The hydrodynamic period matrices and closings of an open Riemann surface of finite genus
[ Abstract ]
A closing of an open Riemann srface $R$ of finite genus is a shorter name of a closed Riemann surface of the same genus into which $R$ can be embedded by a homology type preserving conformal mapping. We observe the Riemann period matrices of all closings of $R$ in the Siegel upper half space. It is known that every hydrodynamic differential on $R$ yields a closing of $R$ called a hydrodynamic closing. (A hydrodynamic differential is a holomorphic which describes a steady flow on $R$ of an ideal fluid.) We study the period matices induced by hydrodynamic closings of $R$. This is a joint work with Masakazu Shiba.
[ Reference URL ]
https://zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB