複素解析幾何セミナー

過去の記録 ~10/03次回の予定今後の予定 10/04~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2016年05月23日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
鍋島 克輔 氏 (徳島大学)
A computation method for algebraic local cohomology and its applications (JAPANESE)
[ 講演概要 ]
Local cohomology was introduced by A. Grothendieck. Subsequent development to a great extent has been motivated by Grothendieck's ideas. Nowadays, local cohomology is a key ingredient in algebraic geometry, commutative algebra, topology and D-modules, and is a fundamental tool for applications in several fields.
In this talk, an algorithmic method to compute algebraic local cohomology classes (with parameters), supported at a point, associated with a given zero-dimensional ideal, is considered in the context of symbolic computation. There are several applications of the method. For example, the method can be used to analyze properties of singularities and deformations of Artin algebra. As the applications, methods for computing standard bases of zero-dimensional ideals and solving ideal membership problems, are also introduced.