Seminar on Geometric Complex Analysis

Seminar information archive ~06/09Next seminarFuture seminars 06/10~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama


10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Katsusuke Nabeshima (The University of Tokushima)
A computation method for algebraic local cohomology and its applications (JAPANESE)
[ Abstract ]
Local cohomology was introduced by A. Grothendieck. Subsequent development to a great extent has been motivated by Grothendieck's ideas. Nowadays, local cohomology is a key ingredient in algebraic geometry, commutative algebra, topology and D-modules, and is a fundamental tool for applications in several fields.
In this talk, an algorithmic method to compute algebraic local cohomology classes (with parameters), supported at a point, associated with a given zero-dimensional ideal, is considered in the context of symbolic computation. There are several applications of the method. For example, the method can be used to analyze properties of singularities and deformations of Artin algebra. As the applications, methods for computing standard bases of zero-dimensional ideals and solving ideal membership problems, are also introduced.