談話会・数理科学講演会
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
担当者 | 足助太郎,寺田至,長谷川立,宮本安人(委員長) |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2014年05月02日(金)
16:30-17:30 数理科学研究科棟(駒場) 123号室
旧記録は、上記セミナーURLにあります。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。
A.P. Veselov 氏 (Loughborough, UK and Tokyo, Japan)
From hyperplane arrangements to Deligne-Mumford moduli spaces: Kohno-Drinfeld way (ENGLISH)
旧記録は、上記セミナーURLにあります。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。
A.P. Veselov 氏 (Loughborough, UK and Tokyo, Japan)
From hyperplane arrangements to Deligne-Mumford moduli spaces: Kohno-Drinfeld way (ENGLISH)
[ 講演概要 ]
Gaudin subalgebras are abelian Lie subalgebras of maximal
dimension spanned by generators of the Kohno-Drinfeld Lie algebra t_n,
associated to A-type hyperplane arrangement.
It turns out that Gaudin subalgebras form a smooth algebraic variety
isomorphic to the Deligne-Mumford moduli space \\bar M_{0,n+1} of
stable genus zero curves with n+1 marked points.
A real version of this result allows to describe the
moduli space of integrable n-dimensional tops and
separation coordinates on the unit sphere
in terms of the geometry of Stasheff polytope.
The talk is based on joint works with L. Aguirre and G. Felder and with K.
Schoebel.
Gaudin subalgebras are abelian Lie subalgebras of maximal
dimension spanned by generators of the Kohno-Drinfeld Lie algebra t_n,
associated to A-type hyperplane arrangement.
It turns out that Gaudin subalgebras form a smooth algebraic variety
isomorphic to the Deligne-Mumford moduli space \\bar M_{0,n+1} of
stable genus zero curves with n+1 marked points.
A real version of this result allows to describe the
moduli space of integrable n-dimensional tops and
separation coordinates on the unit sphere
in terms of the geometry of Stasheff polytope.
The talk is based on joint works with L. Aguirre and G. Felder and with K.
Schoebel.