複素解析幾何セミナー
過去の記録 ~09/10|次回の予定|今後の予定 09/11~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2006年05月15日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
Nessim Sibony 氏 (Paris Sud)
Laminations with Singularities by Riemann Surfaces I (Part II on May 22)
Nessim Sibony 氏 (Paris Sud)
Laminations with Singularities by Riemann Surfaces I (Part II on May 22)
[ 講演概要 ]
The basic example of a lamination, possibly with singularites, by Riemann surfaces, is the closure of a leaf of a holomorphic foliation in the complex projective plane.There are also many examples arising from the theory of iteration of a holomorphic map. The goal is to introduce tools in order to understand the globalproperties of leaves of a holomorphic lamination, mostly in compact Kaehler manifolds. We will develop the following topics.
-Poincare metric on a hyperbolic lamination.
-Positive cycles and positive harmonic currents directed by a lamination.
-Ahlfors construction of positive harmonic currents.
-Cohomological and geometrical intersection of positive harmonic currents.
The basic example of a lamination, possibly with singularites, by Riemann surfaces, is the closure of a leaf of a holomorphic foliation in the complex projective plane.There are also many examples arising from the theory of iteration of a holomorphic map. The goal is to introduce tools in order to understand the globalproperties of leaves of a holomorphic lamination, mostly in compact Kaehler manifolds. We will develop the following topics.
-Poincare metric on a hyperbolic lamination.
-Positive cycles and positive harmonic currents directed by a lamination.
-Ahlfors construction of positive harmonic currents.
-Cohomological and geometrical intersection of positive harmonic currents.