Seminar on Geometric Complex Analysis
Seminar information archive ~09/19|Next seminar|Future seminars 09/20~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
2006/05/15
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Nessim Sibony (Paris Sud)
Laminations with Singularities by Riemann Surfaces I (Part II on May 22)
Nessim Sibony (Paris Sud)
Laminations with Singularities by Riemann Surfaces I (Part II on May 22)
[ Abstract ]
The basic example of a lamination, possibly with singularites, by Riemann surfaces, is the closure of a leaf of a holomorphic foliation in the complex projective plane.There are also many examples arising from the theory of iteration of a holomorphic map. The goal is to introduce tools in order to understand the globalproperties of leaves of a holomorphic lamination, mostly in compact Kaehler manifolds. We will develop the following topics.
-Poincare metric on a hyperbolic lamination.
-Positive cycles and positive harmonic currents directed by a lamination.
-Ahlfors construction of positive harmonic currents.
-Cohomological and geometrical intersection of positive harmonic currents.
The basic example of a lamination, possibly with singularites, by Riemann surfaces, is the closure of a leaf of a holomorphic foliation in the complex projective plane.There are also many examples arising from the theory of iteration of a holomorphic map. The goal is to introduce tools in order to understand the globalproperties of leaves of a holomorphic lamination, mostly in compact Kaehler manifolds. We will develop the following topics.
-Poincare metric on a hyperbolic lamination.
-Positive cycles and positive harmonic currents directed by a lamination.
-Ahlfors construction of positive harmonic currents.
-Cohomological and geometrical intersection of positive harmonic currents.