今後の予定

過去の記録 ~12/09本日 12/10 | 今後の予定 12/11~

2018年12月11日(火)

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
Marek Fila 氏 (Comenius University in Bratislava)
Solutions with moving singularities for equations of porous medium type (English)
[ 講演概要 ]
We construct positive solutions of equations of porous medium type with a singularity which moves in time along a prescribed curve and keeps the spatial profile of singular stationary solutions. It turns out that there appears a critical exponent for the existence of such solutions. This is a joint work with Jin Takahashi and Eiji Yanagida.

トポロジー火曜セミナー

17:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 17:00-17:30
石田 政司 氏 (大阪大学)
On non-singular solutions to the normalized Ricci flow on four-manifolds (JAPANESE)
[ 講演概要 ]
A solution to the normalized Ricci flow is called non-singular if the solution exists for all time and the Riemannian curvature tensor is uniformly bounded. In 1999, Richard Hamilton introduced it as an important special class of solutions and proved that the underlying 3-manifold is geometrizable in the sense of Thurston. In this talk, we will discuss properties of 4-dimensional non-singular solutions from a gauge theoretical point of view. In particular, we would like to explain gauge theoretical invariants give rise to obstructions to the existence of 4-dimensional non-singular solutions.

Lie群論・表現論セミナー

17:00-18:00   数理科学研究科棟(駒場) 117号室
滝聞太基 氏 (東京大学大学院数理科学研究科)
A Pieri-type formula and a factorization formula for K-k-Schur functions
[ 講演概要 ]
We give a Pieri-type formula for the sum of K-k-Schur functions \sum_{\mu\le\lambda}g^{(k)}_{\mu} over a principal order ideal of the poset of k-bounded partitions under the strong Bruhat order, which sum we denote by \widetilde{g}^{(k)}_{\lambda}. As an application of this, we also give a k-rectangle factorization formula \widetilde{g}^{(k)}_{R_t\cup\lambda}=\widetilde{g}^{(k)}_{R_t} \widetilde{g}^{(k)}_{\lambda}
where R_t=(t^{k+1-t}), analogous to that of k-Schur functions s^{(k)}_{R_t\cup \lambda}=s^{(k)}_{R_t}s^{(k)}_{\lambda}.

2018年12月12日(水)

代数学コロキウム

18:00-19:00   数理科学研究科棟(駒場) 056号室
Gaëtan Chenevier 氏 (CNRS, Université Paris-Sud)
A higher weight (and automorphic) generalization of the Hermite-Minkowski theorem (ENGLISH)
[ 講演概要 ]
I will show that for any integer N, there are only finitely many cuspidal algebraic automorphic representations of GL_m over Q whose Artin conductor is N and whose "weights" are in the interval {0,...,23} (with m varying). Via the conjectural yoga between geometric Galois representations (or motives) and algebraic automorphic forms, this statement may be viewed as a generalization of the classical Hermite-Minkowski theorem in algebraic number theory. I will also discuss variants of these results when the base field Q is replaced by an arbitrary number field.

(本講演は「東京北京パリ数論幾何セミナー」として,インターネットによる東大数理,Morningside Center of Mathematics と IHES の双方向同時中継で行います.今回はパリからの中継です.)

2018年12月17日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
神本丈 氏 (九州大学)
Newton polyhedra and order of contact on real hypersurfaces (JAPANESE)
[ 講演概要 ]
This talk will concern some issues on order of contact on real hypersurfaces, which was introduced by D'Angelo. To be more precise, a sufficient condition for the equality of regular type and singular type is given. This condition is written by using the Newton polyhedron of a defining function. Our result includes earlier known results concerning convex domains, pseudoconvex Reinhardt domains and pseudoconvex domains whose regular types are 4. Furthermore, under the above condition, the values of the types can be directly seen in a simple geometrical information from the Newton polyhedron.

The technique of using Newton polyhedra has many significant applications in singularity theory. In particular, this technique has been great success in the study of the Lojasiewicz exponent. Our study about the types is analogous to some works on the Lojasiewicz exponent.

2018年12月18日(火)

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
In-Jee Jeong 氏 (Korea Institute for Advanced Study (KIAS))
Dynamics of singular vortex patches (English)
[ 講演概要 ]
Vortex patches are solutions to the 2D Euler equations that are given by the characteristic function of a bounded domain that moves with time. It is well-known that if initially the boundary of the domain is smooth, the boundary remains smooth for all time. On the other hand, we consider patches with corner singularities. It turns out that, depending on whether the initial patch satisfies an appropriate rotational symmetry condition or not, the corner structure may propagate for all time or lost immediately. In the rotationally symmetric case, we are able to construct patches with interesting dynamical behavior as time goes to infinity. When the symmetry is absent, we present a simple yet formal evolution equation which describes the dynamics of the boundary. It suggests that the angle cusps instantaneously for $t > 0$.
This is joint work with Tarek Elgindi.

トポロジー火曜セミナー

17:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 17:00-17:30
鳥居 猛 氏 (岡山大学)
離散GスペクトラムとK(n)局所安定ホモトピー圏のモデルについて (JAPANESE)
[ 講演概要 ]
K(n)局所安定ホモトピー圏はスペクトラムの安定ホモトピー圏の基本構成単位と考えられる。この講演ではMorava E理論とその安定化群との関係が明確になるようなK(n)局所安定ホモトピー圏のモデルを構成する。そのために、Behrens-Davisにより研究された副有限群Gに対する離散対称Gスペクトラムについて考える。そして、K(n)局所安定ホモトピー圏が、離散対称G_nスペクトラムの圏におけるE_nの離散モデル上の加群のホモトピー圏の中に実現されることを示す。

2018年12月19日(水)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 126号室
水田黎 氏 (東大数理)
Polynomial Time Algorithm for Computing N-th Moments of a Self-Adjoint Operator in Algebra Generated by Free Independent Semicircular Elements

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 056号室
Jean-Stefan Koskivirta 氏 (東京大学数理科学研究科)
Cohomology vanishing for automorphic vector bundles (ENGLISH)
[ 講演概要 ]
A Shimura variety carries naturally a family of vector bundles parametrized by the characters of a maximal torus in the attached group. We want to determine which of these vector bundles are ample, and also show cohomology vanishing results. For this we use generalized Hasse invariants on the stack of G-zips of Moonen-Pink-Wedhorn-Ziegler. It is a group-theoretical counterpart of the Shimura variety and carries a similar family of vector bundles. This is joint work with Y.Brunebarbe, W.Goldring and B.Stroh.

2018年12月25日(火)

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
眞崎聡 氏 (大阪大学)
Modified scattering for nonlinear dispersive equations with critical non-polynomial nonlinearities (Japanese)
[ 講演概要 ]
In this talk, I will introduce resent progress on modified scattering for Schrodinger equation and Klein-Gordon equation with a non-polynomial nonlinearity. We use Fourier series expansion technique to find the resonant part of the nonlinearity which produces phase correction factor.

2019年01月09日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 056号室
Laurent Berger 氏 (ENS de Lyon)
Formal groups and p-adic dynamical systems (ENGLISH)
[ 講演概要 ]
A formal group gives rise to a p-adic dynamical system. I will discuss some results about formal groups that can be proved using this point of view. I will also discuss the theory of p-adic dynamical systems and some open questions.

2019年01月16日(水)

代数学コロキウム

18:00-19:00   数理科学研究科棟(駒場) 056号室
Lei Fu 氏 (Yau Mathematical Sciences Center, Tsinghua University)
p-adic Gelfand-Kapranov-Zelevinsky systems (ENGLISH)
[ 講演概要 ]
Using Dwork's trace formula, we express the exponential sum associated to a Laurent polynomial as the trace of a chain map on a twisted de Rham complex for the torus over the p-adic field. Treating the coefficients of the polynomial as parameters, we obtain the p-adic Gelfand-Kapranov-Zelevinsky (GKZ) system, which is a complex of D^\dagger-modules with Frobenius structure.

(本講演は「東京北京パリ数論幾何セミナー」として,インターネットによる東大数理,Morningside Center of Mathematics と IHES の双方向同時中継で行います.今回は北京からの中継です.)

2019年01月22日(火)

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
加藤圭一 氏 (東京理科大学)
TBA (Japanese)

2019年01月28日(月)

東京確率論セミナー

16:00-17:30   数理科学研究科棟(駒場) 128号室
河本 陽介 氏 (福岡歯科大学)
TBA (JAPANESE)

2019年01月29日(火)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
三井健太郎 氏 (神戸)
Logarithmic good reduction and the index (TBA)
[ 講演概要 ]
A proper smooth variety over a complete discrete valuation field is said to have (log) good reduction if it admits a proper (log) smooth model over the valuation ring (the log structure is given by the closed fiber). Monodromy criteria for good reduction and log good reduction have been studied. We study the log case by additional other conditions on geometric invariants such as the index of the variety (the minimal positive degree of a 0-cycle). In particular, we obtain a criterion for log good reduction of curves of genus one.