今後の予定

過去の記録 ~04/29本日 04/30 | 今後の予定 05/01~

2017年05月08日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
藤澤 太郎 氏 (東京電機大学)
Semipositivity theorems for a variation of Hodge structure
[ 講演概要 ]
I will talk about my recent joint work with Osamu Fujino. The main purpose of our joint work is to generalize the Fujita-Zukcer-Kawamata semipositivity theorem from the analytic viewpoint. In this talk, I would like to illustrate the relation between the two objects, the asymptotic behavior of a variation of Hodge structure and good properties of the induced singular hermitian metric on an invertible subbundle of the Hodge bundle.

幾何コロキウム

16:00-17:00   数理科学研究科棟(駒場) 056号室
丸橋広和 氏 (東京大学大学院数理科学研究科(学振PD))
Parameter rigidity of the action of AN on G/Γ for higher rank semisimple Lie groups
[ 講演概要 ]
Sを連結単連結可解Lie群とし、閉多様体Mへの滑らかな局所自由作用ρを考える。ρがパラメータ剛性をもつとはSのMへの滑らかな局所自由作用でρと同じ軌道分解をもつものがすべて滑らかな写像によってρと共役になることをいう。

1990年頃KatokとSpatzierは次の定理を示した。Gを中心有限連結実半単純Lie群で、コンパクトな単純因子、SO(n,1), SU(n,1)と局所同型な単純因子をもたないもの、ΓをGの既約一様格子、G=KANをGの岩澤分解とする。このときGの実階数が2以上ならば可換群AのG/Γへの掛け算による作用はパラメータ剛性をもつ。
一方私は去年、同じ仮定のもと可解Lie群ANのG/Γへの掛け算による作用もパラメータ剛性をもつことを示した。証明には上記Katok-Spatzierの定理の他に、以前私が証明した可解Lie群の作用のパラメータ剛性の十分条件、Pansu、Kleiner-Leeb、Farb-Mosher、Reiter Ahlinによる対称空間の擬等長写像の剛性定理を使う。
講演ではANの作用の剛性定理をどのように証明するか説明する。

2017年05月09日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
諏訪 立雄 氏 (北海道大学)
Local and global coincidence homology classes (JAPANESE)
[ 講演概要 ]
We consider two differentiable maps between two oriented manifolds. In the case the manifolds are compact with the same dimension and the coincidence points are isolated, there is the Lefschetz coincidence point formula, which generalizes his fixed point formula. In this talk we discuss the case where the dimensions of the manifolds may possible be different so that the coincidence points are not isolated in general. In fact it seems that Lefschetz himself already considered this case (cf. [4]).

We introduce the local and global coincidence homology classes and state a general coincidence point theorem.
We then give some explicit expressions for the local class. We also take up the case of several maps as considered in [1] and perform similar tasks. These all together lead to a generalization of the aforementioned Lefschetz formula. The key ingredients are the Alexander duality in combinatorial topology, intersection theory with maps and the Thom class in Čech-de Rham cohomology. The contents of the talk are in [2] and [3].

References
[1] C. Biasi, A.K.M. Libardi and T.F.M. Monis, The Lefschetz coincidence class of p maps, Forum Math. 27 (2015), 1717-1728.
[2] C. Bisi, F. Bracci, T. Izawa and T. Suwa, Localized intersection of currents and the Lefschetz coincidence point theorem, Annali di Mat. Pura ed Applicata 195 (2016), 601-621.
[3] J.-P. Brasselet and T. Suwa, Local and global coincidence homology classes, arXiv:1612.02105.
[4] N.E. Steenrod, The work and influence of Professor Lefschetz in algebraic topology, Algebraic Geometry and Topology: A Symposium in Honor of Solomon Lefschetz, Princeton Univ. Press 1957, 24-43.

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
柴田 康介 氏 (東大数理)
Upper bound of the multiplicity of locally complete intersection singularities (English)
[ 講演概要 ]
The multiplicity of a point on a variety is a fundamental invariant to estimate how the singularity is bad. It is introduced in a purely algebraic context. On the other hand, we can also attach to the singularity the log canonical threshold and the minimal log discrepancy, which are introduced in a birational theoretic context. In this talk, we show bounds of the multiplicity by functions of these birational invariants for a singularity of locally a complete intersection. As an application, we obtain the affirmative answer to Watanabe’s conjecture on the multiplicity of canonical singularity of locally a complete intersection up to dimension 32.

2017年05月10日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 056号室
加藤大輝 氏 (東京大学数理科学研究科)
Wild ramification and restrictions to curves (JAPANESE)
[ 講演概要 ]
スキーム上のエタール層の暴分岐がすべての曲線への制限のArtin導手で決まるかどうかを調べ、特異点解消を仮定するとそれが正しいこと、特に、スキームが2次元の場合には正しいことを示した。
またその帰結として、(次元に関する仮定なしに)体上の多様体のエタール層のEuler-Poincare標数や、局所体上の多様体のエタール層から定まるGalois表現のSwan導手の交代和もすべての"曲線"への制限のArtin導手で決まるという結果を得た。

2017年05月15日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
服部 広大 氏 (慶應義塾大学)
On the moduli spaces of the tangent cones at infinity of some hyper-Kähler manifolds
[ 講演概要 ]
For a metric space $(X,d)$, the Gromov-Hausdorff limit of $(X, a_n d)$ as $a_n \rightarrow 0$ is called the tangent cone at infinity of $(X,d)$. Although the tangent cone at infinity always exists if $(X,d)$ comes from a complete Riemannian metric with nonnegative Ricci curvature, the uniqueness does not hold in general. Colding and Minicozzi showed the uniqueness under the assumption that $(X,d)$ is a Ricci-flat manifold satisfying some additional conditions.
In this talk, I will explain a example of noncompact complete hyper-Kähler manifold who has several tangent cones at infinity, and determine the moduli space of them.

2017年05月16日(火)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
古川 勝久 氏 (東大数理)
TBA (English)
[ 講演概要 ]
TBA

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
合田 洋 氏 (東京農工大学)
Twisted Alexander invariants and Hyperbolic volume of knots (JAPANESE)
[ 講演概要 ]
In [1], Müller investigated the asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, and then Menal-Ferrer and Porti [2] have obtained a formula on the volume of a hyperbolic 3-manifold using the Higher-dimensional Reidemeister torsion.

On the other hand, Yoshikazu Yamaguchi has shown that a relationship between the twisted Alexander polynomial and the Reidemeister torsion associated with the adjoint representation of the holonomy representation of a hyperbolic 3-manifold in his thesis [3].

In this talk, we observe that Yamaguchi's idea is applicable to the Higher-dimensional Reidemeister torsion, then we give a volume formula of a hyperbolic knot using the twisted Alexander polynomial.

References

[1] Müller, W., The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry, 317--352, Progr. Math., 297, Birkhäuser/Springer, Basel, 2012.

[2] Menal-Ferrer, P. and Porti, J., Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds. J. Topol., 7 (2014), no. 1, 69--119.

[3] Yamaguchi, Y., On the non-acyclic Reidemeister torsion for knots, Dissertation at the University of Tokyo, 2007.

2017年05月22日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
小池 貴之 氏 (京都大学)
Complex K3 surfaces containing Levi-flat hypersurfaces
[ 講演概要 ]
We show the existence of a complex K3 surface $X$ which is not a Kummer surface and has a one-parameter family of Levi-flat hypersurfaces in which all the leaves are dense. We construct such $X$ by patching two open complex surfaces obtained as the complements of tubular neighborhoods of elliptic curves embedded in blow-ups of the projective planes at general nine points.

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 118号室
増田俊彦 氏 (九大数理)
(English)
[ 講演概要 ]
Classification of Roberts actions of strongly amenable
$C^*$-tensor categories on the injective factor of type III$_1$

東京確率論セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
田原 喜宏 氏 (長岡工業高等専門学校)
マルコフおよびシュレディンガー半群のコンパクト性について (JAPANESE)

2017年05月23日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 大講義室号室
Tea: 大講義室前ホワイエ 16:40-17:00
Richard Hain 氏 (Duke University)
Johnson homomorphisms, stable and unstable (ENGLISH)
[ 講演概要 ]
In this talk I will recall how motivic structures (Hodge and/or Galois) on the relative completions of mapping class groups yield non-trivial information about Johnson homomorphisms. I will explain how these motivic structures can be pasted, and why I believe that the genus 1 case is of fundamental importance in studying the higher genus (stable) case.

2017年05月26日(金)

談話会・数理科学講演会

15:30-16:30   数理科学研究科棟(駒場) 002号室
会田茂樹 氏 (東京大学大学院数理科学研究科)
ループ空間上のスペクトルギャップの漸近挙動について (JAPANESE)
[ 講演概要 ]
リーマン多様体上にはブラウン運動などの
自然な確率過程が定義でき、ブラウン運動を通して解析および幾何の問題を
研究することができる。
一方、このブラウン運動が定める道の空間やループ空間上の
確率測度は道のエネルギーを指数の肩にのせた汎関数を重みに持つ形式的
経路積分表示を持つ。この事から、極めて良い状況ならば
ループ空間上のディリクレ形式で定まる作用素の
分散0の極限(準古典極限に相当する)の下でのスペクトルギャップの漸近挙動
が予想できることになる。
この講演では、この問題について、どのような点が難しいか、
何が知られているかをお話したい。

2017年05月29日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
澤井 洋 氏 (沼津工業高等専門学校)
LCK structures on compact solvmanifolds
[ 講演概要 ]
A locally conformal Kähler (in short LCK) manifold is said to be Vaisman if Lee form is parallel with respect to Levi-Civita connection. In this talk, we prove that a Vaisman structure on a compact solvmanifolds depends only on the form of the fundamental 2-form, and it do not depends on a complex structure. As an application, we give the structure theorem for Vaisman (completely solvable) solvmanifolds and LCK nilmanifolds. Moreover, we show the existence of LCK solvmanifolds without Vaisman structures.

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 118号室
磯野優介 氏 (京大数理研)
On fundamental groups of tensor product II$_1$ factors (English)

東京確率論セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
中島 秀太 氏 (京都大学 数理解析研究所)
TBA (JAPANESE)

2017年05月30日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
森藤 孝之 氏 (慶應義塾大学)
On a conjecture of Dunfield, Friedl and Jackson for hyperbolic knots (JAPANESE)
[ 講演概要 ]
The hyperbolic torsion polynomial is defined to be the twisted Alexander polynomial associated to the holonomy representation of a hyperbolic knot. Dunfield, Friedl and Jackson conjecture that the hyperbolic torsion polynomial determines the genus and fiberedness of a hyperbolic knot. In this talk we will survey recent results on the conjecture and explain its generalization to hyperbolic links.

東京無限可積分系セミナー

17:30-18:30   数理科学研究科棟(駒場) 002号室
岡田 聡一 氏 (名大多元数理)
$C$ 型ルート系に付随した $Q$ 関数 (JAPANESE)
[ 講演概要 ]
Schur の $Q$ 関数は,対称群の射影表現の研究の中で Schur によ
って導入された対称関数であり,$A$ 型のルート系に付随した
Hall-Littlewood 対称関数において $t=-1$ としたものでもある.
($t=0$ としたものが Schur 関数である.)この講演では,$C$
型のルート系に付随した Hall-Littlewood 関数において $t=-1$
とおいたもの(斜交 $Q$ 関数)を考える.斜交 $Q$ 関数に対する
Pfaffian 公式を紹介し,組合せ論的表示を与えるとともに,いく
つかの正値性予想を提示する.

2017年06月06日(火)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
Chen Jiang 氏 (IPMU)
TBA (English)
[ 講演概要 ]
TBA
[ 講演参考URL ]
https://sites.google.com/site/chenjiangmath/

2017年06月12日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
松本 佳彦 氏 (大阪大学)
TBA
[ 講演概要 ]
TBA

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 056号室
普段と曜日・部屋が異なります
Ivan Cheltsov 氏 (The University of Edinburgh)
TBA (English)
[ 講演概要 ]
TBA

2017年06月19日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
竹内 有哉 氏 (東京大学)
TBA
[ 講演概要 ]
TBA

東京確率論セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
石谷 謙介 氏 (首都大学東京 大学院理工学研究科)
TBA (JAPANESE)

2017年06月26日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
二木 昭人 氏 (東京大学)
TBA
[ 講演概要 ]
TBA

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 118号室
David Kerr 氏 (Texas A & M Univ.)
TBA (English)

12 次へ >