今後の予定

過去の記録 ~05/24本日 05/25 | 今後の予定 05/26~

2016年05月27日(金)

談話会・数理科学講演会

15:30-16:30   数理科学研究科棟(駒場) 123号室
北山貴裕 氏 (東京大学大学院数理科学研究科)
線形表現のモジュライ空間と3次元多様体の分解について
[ 講演概要 ]
線形表現の変形から離散群や多様体の分解を捉える研究について紹介する.Bass
-Serre理論によれば,与えられた群を部分群の融合積やHNN拡大として分解する
には,treeへの作用を見つければよい.1983年にMarc CullerとPeter Shalenに
よって,2次元線形表現の成す空間の無限遠点から,有限生成群のtreeへの非自
明な作用を構成する方法が確立された.特に,3次元多様体の基本群に適用する
と,群の分解に対応して,多様体を本質的に分解するような部分曲面が構成され
る.3次元多様体論において,本質的曲面を見つけることは基本的な問題で一般
に難しい.彼らの理論は双曲幾何学とも密接に結び付いて,問題の理解に画期的
な視点を提供した.しかし,3次元多様体に限っても,この方法では捉えられな
い分解の例が知られている.講演では,Culler-Shalen理論を高次元線形表現の
場合に拡張することで,3次元多様体内の全ての本質的曲面を構成できることを
報告する.

幾何コロキウム

10:00-11:30   数理科学研究科棟(駒場) 118号室
いつもと部屋が違いますのでご注意下さい。
今城洋亮 氏 (Kavli IPMU)
Compact Special Lagrangian T^2-conifolds (Japanese)
[ 講演概要 ]
Special Lagrange 部分多様体は Calabi-Yau 多様体の体積最小 Lagrange 部分多様体として定義される。面白いが難しいトピックとして (1) SYZ予想、(2) special Lagrangian homology sphereの数え上げ、(3) 深谷圏との関連がある。この3つの問題は全て special Lagrange 部分多様体の特異点に関わる。この辺の基本的な事の説明から始め、その後 T^2-cone 型の簡単な特異点について話す。

幾何コロキウム

13:00-14:30   数理科学研究科棟(駒場) 118号室
いつもと部屋が違うのでご注意下さい。
松本 佳彦 氏 (大阪大学)
有界強擬凸領域におけるCheng-Yau計量のEinstein変形と$L^2$コホモロジー (Japanese)
[ 講演概要 ]
Stein多様体の有界強擬凸領域上には、S. Y. Cheng と S. T. Yau によって示されたように、負スカラー曲率を持つ完備 Kähler-Einstein 計量が正定数倍を除き一意的に存在する。本講演では、次元が 3 以上という仮定のもとで、Cheng-Yau 計量を変形することにより境界の partially integrable CR 構造でパラメタ付けられた Einstein 計量の族が得られることを説明する。必要となるのは線型化 Einstein 作用素の解析だが、これは正則接束値 $L^2$ Dolbeault コホモロジーの消滅と関連している。

2016年05月30日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
大沢 健夫 氏 (名古屋大学)
レビ平坦面の幾何と$\overline{\partial}$-方程式 (JAPANESE)
[ 講演概要 ]
複素多様体上の局所擬凸領域がいつ正則凸になるかは複素解析における基本的な未解決問題である。現状は最終的な解決には程遠いが、射影空間やトーラスなどの場合にはよくわかっている。この問題に関しては、幾何学的な諸条件によって$\overline{\partial}$-方程式が解けたり解けなかったりする状況が詳しくわかってくると面白いのだが、その一つの成功例がレビ平坦面の理論である。レビ平坦面はコンパクトな複素多様体を実一次元分膨らませたようなもので、直積のような自明なものを除けば、トーラス上の非正則凸な擬凸領域の境界としてこのような構造が初めて現れた。以来、レビ平坦面の例が他にもいろいろあることが判明し、その結果分類問題が発生した。これも最終的な解決には程遠いのだが、幾つかの結果は$\overline{\partial}$-方程式の可解性に関する研究の果実となっており、「複素解析幾何らしさ」を持っている。集中講義のマクラとしてこの辺をサーベイしてみたい。

東京確率論セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
大塚 隆史 氏 (首都大学東京大学院理工学研究科)
シェルピンスキー・ガスケット上の自己回避過程の族のくりこみ群の方法を用いた解析
[ 講演概要 ]
サイズの大きい順にループを消去する方法は,シェルピンスキー・ガスケット上のシンプル・ランダム・ウォークからループを消去するために導入されたが,この方法は非マルコフ過程に対しても適用できる.特に,自己反発ウォークとよばれる非マルコフ的なランダム・ウォークの族にこの方法を適用し,「通常の」ループ・イレーズド・ウォークと「通常の」自己回避ウォークをあるパラメータで連続的に内挿する,自己回避的な確率過程の族を構成することができる.本講演では,このようにして構成した確率過程の族に対して連続極限が存在することや,自己回避性,ハウスドルフ次元(自明な自己回避過程でないこと),短時間挙動を表す指数,重複対数の法則などの見本関数の性質を示す.

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 118号室
窪田陽介 氏 (東大数理)
題未定

2016年05月31日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Benoît Guerville-Ballé 氏 (東京学芸大学)
A linking invariant for algebraic curves (ENGLISH)
[ 講演概要 ]
We construct a topological invariant of algebraic plane curves, which is in some sense an adaptation of the linking number of knot theory. As an application, we show that this invariant distinguishes a new Zariski pair of curves (ie a pair of curves having same combinatorics, yet different topology).

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
渡邉 究 氏 (埼玉大理)
A Characterization of Symplectic Grassmannians (JAPANESE)
[ 講演概要 ]
In the series of their works, J. M. Hwang and N. Mok have been developing the theory of Varieties of Minimal Rational Tangents (VMRT for short). In this direction, the results of Mok and J. Hong-Hwang allow us to recognize a homogeneous Fano manifold X of Picard number one by looking at its VMRT at a general point. This characterization works for all rational homogeneous manifolds of Picard number one whenever the VMRT is rational homogeneous, which is always the case except for the short root cases; namely for symplectic Grassmannians, and for two varieties of type F*4*.

In this talk we show that, if we impose that the VMRT is the expected one at every point of the variety, we may still characterize symplectic Grassmannians. This is a joint work with G. Occhetta and L. E. Sola Conde (arXiv:1604.06867).

2016年06月03日(金)

幾何コロキウム

13:00-14:30   数理科学研究科棟(駒場) 118号室
いつもと部屋が違いますのでご注意下さい。
西納武男 氏 (立教大学)
On a construction of holomorphic disks (Japanese)
[ 講演概要 ]
Recent study of algebraic and symplectic geometry revealed that holomorphic disks play an important role in several situations, deforming the classical geometry in some sense. In this talk we give a construction of holomorphic disks based on deformation theory, mainly on certain algebraic surfaces.

幾何コロキウム

15:00-16:30   数理科学研究科棟(駒場) 118号室
いつもと部屋が違いますのでご注意下さい。
三浦真人 氏 (KIAS)
Calderoのトーリック退化とミラー対称性 (Japanese)
[ 講演概要 ]
本講演では、Fano多様体のトーリック退化に関する基本的な事項を説明する。中でも、Calderoが提案したLusztig--柏原の双対標準基底の弦的助変数付けを用いた、Schubert多様体のトーリック退化に着目する。応用として、直交グラスマン多様体OG(2,7)の線形切断として得られる3次元Calabi--Yau多様体の予想されるミラー構成を紹介する。本講演は井上大輔氏、伊藤敦氏との共同研究に基づいている。

2016年06月06日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
菊田 伸 氏 (工学院大学)
対数的標準束の正値性の退化と完備ケーラー・アインシュタイン計量の境界挙動 (JAPANESE)
[ 講演概要 ]
この講演では, 準射影代数多様体上において, 負のリッチ曲率を持った完備ケーラー・アインシュタイン計量の境界挙動について議論する. この計量が存在するためには, 対数的標準束に対する正値性の仮定が必要なのだが, その境界における退化が境界挙動と関わると目論んでいる. そこでG. Schumacherのある結果を参考にしてたてた境界挙動に関する予想について紹介し, 実際に境界が一般型である場合は成り立つことを報告する. また可能ならば, 境界がカラビ・ヤオの場合の予想についても述べたい.

2016年06月07日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
早野 健太 氏 (慶應義塾大学)
Topology of holomorphic Lefschetz pencils on the four-torus (JAPANESE)
[ 講演概要 ]
In this talk, we will show that two holomorphic Lefschetz pencils on the four-torus are (smoothly) isomorphic if they have the same genus and divisibility. The proof relies on the theory of moduli spaces of polarized abelian surfaces. We will also give vanishing cycles of some holomorphic pencils of the four-torus explicitly. This is joint work with Noriyuki Hamada (The University of Tokyo).

2016年06月08日(水)

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 056号室
Xu Shen 氏 (Morningside Center of Mathematics)
Local and global geometric structures of perfectoid Shimura varieties (English)
[ 講演概要 ]
In this talk, we will investigate some geometric structural properties of perfectoid Shimura varieties of abelian type. In the global part, we will construct some minimal and toroidal type compactifications for these spaces, and we will describe explicitly the degeneration of Hodge-Tate period map at the boundaries. In the local part, we will show that each Newton stratum of these perfectoid Shimura varieties can be described by the related (generalized) Rapoport-Zink space and Igusa variety. As a consequence of our local and global constructions, we can compute the stalks of the relative cohomology under the Hodge-Tate period map of the intersection complex (on the minimal compactification), in terms of cohomology of Igusa varieties at the boundary with truncated coefficients.

(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.今回は北京からの中継です.)

2016年06月13日(月)

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
鈴木厚 氏 (大阪大学サイバーメディアセンター)
Dissection : A direct solver with kernel detection for finite element matrices
(日本語)
[ 講演概要 ]
Large-scale sparse matrices are solved in finite element analyses of elasticity and/or flow problems. In some cases, the matrix may be singular, e.g. due to pressure ambiguity of the Navier-Stokes equations, or due to rigid body movements of sub-domain elasticity problems by a domain decomposition method. Therefore, it is better the linear solver understands rank-deficiency of the matrix.
By assuming the matrix is factorized into LDU form with a symmetric partial permutation, and by introducing a threshold to postpone factorization for pseudo null pivots, solvability of the last Schur complement matrix will be examined. Usual procedure for rank-deficiency problem is based on computation of eigenvalues or singular values and an introduced threshold determines the null space. However, developed new algorithm in DOI:10.1002/nme.4729 is based on computation of residuals combined with orthogonal projections onto supposed image spaces and there is no necessary to introduce a threshold for understanding zero value in floating point. The algorithm uses higher precision arithmetic, e.g. quadruple precision, to distinguish numerical round-off errors that occurred during factorization of the whole sparse matrix from ones during the kernel detection procedure itself.
This is joint work with François-Xavier Roux (LJLL, UPMC/ONERA).

東京確率論セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
得重 雄毅 氏 (京都大学数理解析研究所)
TBA

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
足立 真訓 氏 (東京理科大学)
TBA (JAPANESE)
[ 講演概要 ]
TBA

2016年06月14日(火)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
Zhixian Zhu 氏 (KIAS)
TBA (English)
[ 講演概要 ]
TBA

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 126号室
新國裕昭 氏 (前橋工科大学)
Schr¥"odinger operators on a periodically broken zigzag carbon nanotube (Japanese)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
粕谷 直彦 氏 (青山学院大学)
Non-Kähler complex structures on R^4 (JAPANESE)
[ 講演概要 ]
We consider the following problem. "Is there any non-Kähler complex structure on R^{2n}?" If n=1, the answer is clearly negative. On the other hand, Calabi and Eckmann constructed non-Kähler complex structures on R^{2n} for n ≥ 3. In this talk, I will construct uncountably many non-Kähler complex structures on R^4, and give the affirmative answer to the case where n=2. For the construction, it is important to understand the genus-one achiral Lefschetz fibration S^4 → S^2 found by Yukio Matsumoto and Kenji Fukaya. This is a joint work with Antonio Jose Di Scala and Daniele Zuddas.

2016年06月20日(月)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
普段と曜日が違います。The day of the week is different from usual.
De-Qi Zhang 氏 (National University of Singapore )
TBA (English )
[ 講演概要 ]
TBA
[ 講演参考URL ]
http://www.math.nus.edu.sg/~matzdq/

2016年06月21日(火)

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 126号室
廣川真男 氏 (広島大学大学院工学研究院)
量子 Rabi 模型に対する Hepp-Lieb-Preparata 量子相転移について (Japanese)
[ 講演概要 ]
本講演では、量子相転移の観点から、量子 Rabi 模型を考察する。Preparata は Hepp-Lieb 量子相転移の数学的構造に基づき、物質と光の相互作用が強くなると、物質・光相互作用系の基底状態が、量子状態の緩和で本来放射すべき光子を纏い始め非摂動論的になることを主張した (Hepp-Lieb-Preparata 量子相転移)。最近、情報通信研究機構の吉原らの回路量子電磁気学の実験で、Hepp-Lieb-Preparata 量子相転移を期待させる結果が得られた。そこで、所謂、A2 項 (光の場の2乗の項) の問題を含め、吉原らが実験で扱った量子 Rabi 模型をHepp-Lieb-Preparata 量子相転移の観点から数理物理学的考察を行う。

2016年06月27日(月)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
いつもと曜日が異なります。This seminar will be held on Monday, not on Tuesday.
Christopher Hacon 氏 (University of Utah)
TBA (ENGLISH)
[ 講演概要 ]
TBA
[ 講演参考URL ]
http://www.math.utah.edu/~hacon/

2016年06月28日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
見村 万佐人 氏 (東北大学)
Strong algebraization of fixed point properties (JAPANESE)
[ 講演概要 ]
バナッハ空間(ないしは族)を固定したとき,有限生成群のそれ上の等長作用が常に大域的固定点を持つ,という性質を固定点性質と呼ぶ.ヒルベルト空間全体のなす族を考えたときの固定点性質は,「Kazhdan の性質(T)」と呼ばれる群の剛性と同値であることが知られている.

離散群の線型表現の分類は連続群と違い,群が少しでも複雑になると手に負えない.これが原因で,離散群の固定点性質を直接示すことは当面の間著しく困難であった.Y. Shalom は1999年の論文(Publ. IHES)で,固定点性質を部分群に分けて,最後に“パッチワーク”する,という手法を応用し,上の困難に対し初のブレイクスルーをもたらした.しかし,Shalomのパッチワーク戦略では群の部分群による「有界生成(Bounded Generation)」という厄介な要請が本質的であって(後述するように実はこれは気のせいだったのだが,長年そう信じられてきたように講演者には思われる),この要請がShalomの手法を適用する際の致命的な弱点となっていた.

今回,講演者はShalomのパッチワーク(1999,2006)の思想を発展させて,「有界生成」条件を舞台から追いやることに成功した.講演者の条件は,
部分群たちを広げていくある“ゲーム”の必勝戦略として記述される.講演ではこの“ゲーム”の内容・証明のあらすじをお話したい.これにより,
「有界生成」の成立がわからないような状況でもパッチワーク戦略を適用できうるようになった.系として,いろいろな離散群が強い固定点性質をもつことを示せ,しかも証明も非常にコンセプチュアルである.こうした応用面についても概観したい.

2016年07月04日(月)

東京確率論セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
難波 隆弥 氏 (岡山大学大学院自然科学研究科)
TBA

2016年07月05日(火)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
Dulip Piyaratne 氏 (IPMU)
TBA (English)
[ 講演概要 ]
TBA

12 次へ >