今後の予定

過去の記録 ~01/31本日 02/01 | 今後の予定 02/02~

2015年02月02日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
野口潤次郎 氏 (東京大学)
Inverse of an Abelian Integral on open Riemann Surfaces and a Proof of Behnke-Stein's Theorem
[ 講演概要 ]
Let $X$ be an open Riemann surface and let $\Omega \Subset X$ be a relatively compact domain of $X$. We firstly introduce a scalar function $\rho(a, \Omega)>0$ for $a \in \Omega$ by means of an Abelian integral, which is a sort of convergence radius of the inverse of the Abelian integral, and heuristically measures the distance from $a$ to the boundary $\partial \Omega$. We prove a theorem of Cartan-Thullen type with $\rho(a, \Omega)$ for a holomorphically convex hull $\hat{K}_\Omega$ of a compact subset $K \Subset \Omega$; in particular, $-\log \rho(a, \Omega)$ is a continuous subharmonic function in $\Omega$. Secondly, we give another proof of Behnke-Stein's Theorem (the Steiness of $X$), one of the most basic facts in the theory of Riemann surfaces, by making use of the obtained theorem of Cartan--Thullen type with $\rho(a, \Omega)$, and Oka's Jôku-Ikô together with Grauert's Finiteness Theorem which is now a rather easy consequence of Oka-Cartan's Fundamental Theorem, particularly in one dimensional case.

2015年02月18日(水)

数値解析セミナー

14:30-16:00   数理科学研究科棟(駒場) 002号室
浜向直 氏 (北海道大学大学院理学研究科)
TBA (日本語)

代数学コロキウム

16:40-17:40   数理科学研究科棟(駒場) 056号室
Piotr Achinger 氏 (University of California, Berkeley)
Wild ramification and $K(\pi, 1)$ spaces (English)
[ 講演概要 ]
A smooth variety in characteristic zero is Zariski-locally a $K(\pi,1)$ space, i.e., has trivial higher homotopy groups. This fact is of crucial importance in Artin's proof that $\ell$-adic cohomology agrees with singular cohomology over $\mathbb{C}$. The characteristic $p$ variant of this is not known --- we do not even know whether the affine plane is a $K(\pi, 1)$ in positive characteristic! I will show how to reduce this question to a ``Bertini-type’' statement regarding wild ramification of $\ell$-adic local systems on affine spaces, which might be of independent interest. I will verify this statement in the special case of local systems of rank $1$ and speculate on how one might treat the general case.

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
福島登志夫 氏 (国立天文台)
Precise and fast computation of elliptic integrals and elliptic functions (日本語)
[ 講演概要 ]
Summarized is the recent progress of the methods to compute (i) Legendre's normal form complete elliptic integrals of all three kinds, $K(m)$, $E(m)$, and $\Pi(n|m)$, (ii) Legendre's normal form incomplete elliptic integrals of all three kinds, $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$, (iii) Jacobian elliptic functions, $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $\mathrm{dn}(u|m)$, and $\mathrm{am}(u|m)$, (iv) the inverse functions of $K(m)$ and $E(m)$, $m_K(K)$ and $m_E(E)$, (v) the inverse of a general incomplete elliptic integral in Jacobi's form, $G(\mathrm{am}(u|m),n|m)$, with respect to $u$, and (vi) the partial derivatives of $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $dn(u|m)$, $E(\mathrm{am}(u|m)|m)$, and $\Pi(\mathrm{am}(u|m),n|m)$ with respect to $u$ and those of $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$ with respect to $\phi$. In order to avoid the information loss when $n\ll 1$ and/or $m \ll 1$, focused are the associate incomplete elliptc integrals defined as $B(\phi|m)=[E(\phi|m)-(1-m)F(\phi|m)]/m$, $D(\phi|m)=[F(\phi|m)-E(\phi|m)]/m$, and $J(\phi,n|m)=[\Pi(\phi,n|m)-F(\phi|m)]/n$, and their complete versions, $B(m)=[E(m)-(1-m)K(m)]/m$, $D(m)=[K(m)-E(m)]/m$, and $J(n|m)=[\Pi(n|m)-K(m)]/n$. The main techniques used are (i) the piecewise approximation for single variable functions as $K(m)$, and (ii) the combination of repeated usage of the half and double argument transformations and the truncated Maclaurin series expansions with respect to $u = F(\phi|m)$. The new methods are of the full double precision accuracy without any chance of cancellation against small input arguments. They run significantly faster than the existing methods: (i) 2.5 times faster than Cody's Chebyshev polynomial approximations for $K(m)$ and $E(m)$, (ii) 2.5 times faster than Bulirsch's cel for $\Pi(n|m)$, (iii) slightly faster than Bulirsch's el1 for $F(\phi|m)$, (iv) 3.5 times faster than Carlson's $R_D$ for $E(\phi|m)$, (v) 3.5 times faster than Carlson's $R_C$, $R_D$, $R_F$, and $R_J$ for $\Pi(\phi,n|m)$, and (vi) 1.5 times faster than Bulirsch's \texttt{sncndn} for $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, and $\mathrm{dn}(u|m)$.

2015年02月23日(月)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
Zhenghan Wang 氏 (Microsoft Research Station Q)
Classification of (2+1)-TQFTs and its applications to physics and quantum computation (English)

2015年03月10日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00-16:30 Common Room ; This seminar will be held as FMSP Lectures.
Andrei Pajitnov 氏 (Univ. de Nantes)
Arnold conjecture, Floer homology,
and augmentation ideals of finite groups.
(ENGLISH)
[ 講演概要 ]
Let H be a generic time-dependent 1-periodic
Hamiltonian on a closed weakly monotone
symplectic manifold M. We construct a refined version
of the Floer chain complex associated to (M,H),
and use it to obtain new lower bounds for the number P(H)
of the 1-periodic orbits of the corresponding hamiltonian
vector field. We prove in particular that
if the fundamental group of M is finite
and solvable or simple, then P(H)
is not less than the minimal number
of generators of the fundamental group.

This is joint work with Kaoru Ono.