Lie群論・表現論セミナー
過去の記録 ~05/23|次回の予定|今後の予定 05/24~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2021年10月05日(火)
17:00-18:00 数理科学研究科棟(駒場) Online号室
小林俊行 氏 (東大数理)
"小さな”無限次元表現の分岐則における有界重複度定理
(Japanese)
小林俊行 氏 (東大数理)
"小さな”無限次元表現の分岐則における有界重複度定理
(Japanese)
[ 講演概要 ]
実簡約リー群の”小さな”無限次元表現の族に対して、部分群への分岐則の重複度がいつ有界になるか、に関する幾何的な判定条件を説明する。
この幾何的な必要十分条件を G/HとG/G’が共に簡約対称空間の場合に適用し、H-distinguished なGの任意の既約表現が、部分群G’の表現として有界重複性をもつための3つ組 H ⊂ G ⊃ G' を完全に分類することができる
([Adv. Math. 2021, 7節]、arXiv:2109.14424)。
これらの結果について、できるだけわかりやすく解説する予定である。
実簡約リー群の”小さな”無限次元表現の族に対して、部分群への分岐則の重複度がいつ有界になるか、に関する幾何的な判定条件を説明する。
この幾何的な必要十分条件を G/HとG/G’が共に簡約対称空間の場合に適用し、H-distinguished なGの任意の既約表現が、部分群G’の表現として有界重複性をもつための3つ組 H ⊂ G ⊃ G' を完全に分類することができる
([Adv. Math. 2021, 7節]、arXiv:2109.14424)。
これらの結果について、できるだけわかりやすく解説する予定である。