Lie群論・表現論セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2009年08月12日(水)
10:00-16:30 数理科学研究科棟(駒場) 002号室
Sigurdur Helgason 氏 (MIT) 10:00-11:00
Radon Transform and some Applications
Fulton G. Gonzalez 氏 (Tufts University) 11:20-12:20
Multitemporal Wave Equations: Mean Value Solutins
Angela Pasquale 氏 (Universite Metz) 14:00-15:00
Analytic continuation of the resolvent of the Laplacian in the Euclidean settings
Decay of smooth vectors for regular representations
Sigurdur Helgason 氏 (MIT) 10:00-11:00
Radon Transform and some Applications
Fulton G. Gonzalez 氏 (Tufts University) 11:20-12:20
Multitemporal Wave Equations: Mean Value Solutins
Angela Pasquale 氏 (Universite Metz) 14:00-15:00
Analytic continuation of the resolvent of the Laplacian in the Euclidean settings
[ 講演概要 ]
We discuss the analytic continuation of the resolvent of the Laplace operator on symmetric spaces of the Euclidean type and some generalizations to the rational Dunkl setting.
Henrik Schlichtkrull 氏 (University of Copenhagen) 15:30-16:30We discuss the analytic continuation of the resolvent of the Laplace operator on symmetric spaces of the Euclidean type and some generalizations to the rational Dunkl setting.
Decay of smooth vectors for regular representations
[ 講演概要 ]
Let $G/H$ be a homogeneous space of a Lie group, and consider the regular representation $L$ of $G$ on $E=L^p(G/H)$. A smooth vector for $L$ is a function $f$ in $E$ such that $g$ mapsto $L(g)f$ is smooth, $G$ to $E$. We investigate circumstances under which all such functions decay at infinity (jt with B. Krotz)
Let $G/H$ be a homogeneous space of a Lie group, and consider the regular representation $L$ of $G$ on $E=L^p(G/H)$. A smooth vector for $L$ is a function $f$ in $E$ such that $g$ mapsto $L(g)f$ is smooth, $G$ to $E$. We investigate circumstances under which all such functions decay at infinity (jt with B. Krotz)