東京無限可積分系セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 土曜日 13:30~16:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 神保道夫、国場敦夫、山田裕二、武部尚志、高木太一郎、白石潤一 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~takebe/iat/index-j.html |
2014年12月11日(木)
15:00-18:30 数理科学研究科棟(駒場) 002号室
鹿島 洋平 氏 (東大数理) 15:00-16:30
多体電子系における繰り込み群の方法 (JAPANESE)
Unitary transformations and multivariate special
orthogonal polynomials (JAPANESE)
鹿島 洋平 氏 (東大数理) 15:00-16:30
多体電子系における繰り込み群の方法 (JAPANESE)
[ 講演概要 ]
格子上を移動し、相互作用する
電子たちからなる量子多体系を正の温度下で考える。
各次の項を厳密に書き下すことが原理的には可能であ
るという点で、電子間の結合定数に関する摂動級数
展開が物理量を計算するための有効な手法と考えられ
ている。各次の項を直接的に評価することにより、結合
定数が温度のある巾乗よりも小さいならば摂動級数が
収束することが示される。しかし、低温で相互作用する
電子の模型においてこれは厳しい制約である。多体電子
系の物理量の結合定数に関する解析性を低温で証明する
ために、近年繰り込み群の方法が開発されてきた。
そのひとつの発展として、多体電子系の典型的な模型
である平方格子上のhalf-filledのハバード模型に対し
て繰り込み群の方法を構成し、以下のことを証明する。
もし系に格子の最小の正方形あたりの磁束がπ (mod 2π)
である外部磁場が与えられているならば、系の自由エネ
ルギー密度は結合定数に関して体積、温度に依存しない
原点の近傍で解析的であり、無限体積、絶対零度への極限に
一様に収束する。この外部磁場に関する条件は自由エネ
ルギー密度が最小となるための十分条件であることが知ら
れている。したがって、系の最小自由エネルギー密度
についても同様の解析性と絶対零度への収束性が成り立つ。
渋川 元樹 氏 (九州大学マス・フォア・インダストリ研究所) 17:00-18:30格子上を移動し、相互作用する
電子たちからなる量子多体系を正の温度下で考える。
各次の項を厳密に書き下すことが原理的には可能であ
るという点で、電子間の結合定数に関する摂動級数
展開が物理量を計算するための有効な手法と考えられ
ている。各次の項を直接的に評価することにより、結合
定数が温度のある巾乗よりも小さいならば摂動級数が
収束することが示される。しかし、低温で相互作用する
電子の模型においてこれは厳しい制約である。多体電子
系の物理量の結合定数に関する解析性を低温で証明する
ために、近年繰り込み群の方法が開発されてきた。
そのひとつの発展として、多体電子系の典型的な模型
である平方格子上のhalf-filledのハバード模型に対し
て繰り込み群の方法を構成し、以下のことを証明する。
もし系に格子の最小の正方形あたりの磁束がπ (mod 2π)
である外部磁場が与えられているならば、系の自由エネ
ルギー密度は結合定数に関して体積、温度に依存しない
原点の近傍で解析的であり、無限体積、絶対零度への極限に
一様に収束する。この外部磁場に関する条件は自由エネ
ルギー密度が最小となるための十分条件であることが知ら
れている。したがって、系の最小自由エネルギー密度
についても同様の解析性と絶対零度への収束性が成り立つ。
Unitary transformations and multivariate special
orthogonal polynomials (JAPANESE)
[ 講演概要 ]
ユニタリ変換を用いた直交函数系の研究は古くから知られている.
すなわち, 既知の直交系のユニタリ変換(Fourier変換等)の像を求めることで
新たな直交系を導出し, ユニタリ性からその基本的性質(直交性, 母函数, 微分
方程式等)を解明する, というのがその基本方針である. 一変数の直交函数系に
関してはこのような技法は古くから知られていたが, 近年ではその多変数化(
matrix arguments)の研究もDavidson, Olafsson, Zhang, Faraut, Wakayama et.
alにより行われている.
本講演では, 特にShenによるcircular Jacobi多項式のFourier変換による描写
を紹介し, その多変数化について述べる. このようにして構成される多変数直交
多項式(多変数circular Jacobi多項式)は, 球多項式の一般化(2-パラメータ変
形)になっているが, 球多項式の拡張として良く知られているJack多項式や
Macdonald多項式とも異なる直交系である. 更にそのweight函数はBourgade et
al.により導入されたcircular Jacobi ensembleとなっており, そのCayley変換
はある種の擬微分関係式を満たすこともわかる.
加えて多変数circular Jacobi多項式はJack多項式を含むような一般化も可能
である. この一般化多変数circular Jacobi多項式に関するいくつかの予想及び
問題も述べる.
また時間があれば, 離散型の直交多項式系の代表例であるMeixner, Charlier,
Krawtchouk多項式のユニタリ変換を用いた描写を述べ, その多変数化に関しても
触れる.
ユニタリ変換を用いた直交函数系の研究は古くから知られている.
すなわち, 既知の直交系のユニタリ変換(Fourier変換等)の像を求めることで
新たな直交系を導出し, ユニタリ性からその基本的性質(直交性, 母函数, 微分
方程式等)を解明する, というのがその基本方針である. 一変数の直交函数系に
関してはこのような技法は古くから知られていたが, 近年ではその多変数化(
matrix arguments)の研究もDavidson, Olafsson, Zhang, Faraut, Wakayama et.
alにより行われている.
本講演では, 特にShenによるcircular Jacobi多項式のFourier変換による描写
を紹介し, その多変数化について述べる. このようにして構成される多変数直交
多項式(多変数circular Jacobi多項式)は, 球多項式の一般化(2-パラメータ変
形)になっているが, 球多項式の拡張として良く知られているJack多項式や
Macdonald多項式とも異なる直交系である. 更にそのweight函数はBourgade et
al.により導入されたcircular Jacobi ensembleとなっており, そのCayley変換
はある種の擬微分関係式を満たすこともわかる.
加えて多変数circular Jacobi多項式はJack多項式を含むような一般化も可能
である. この一般化多変数circular Jacobi多項式に関するいくつかの予想及び
問題も述べる.
また時間があれば, 離散型の直交多項式系の代表例であるMeixner, Charlier,
Krawtchouk多項式のユニタリ変換を用いた描写を述べ, その多変数化に関しても
触れる.