東京無限可積分系セミナー
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
開催情報 | 土曜日 13:30~16:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 神保道夫、国場敦夫、山田裕二、武部尚志、高木太一郎、白石潤一 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~takebe/iat/index-j.html |
次回の予定
2024年10月16日(水)
15:30-16:30 数理科学研究科棟(駒場) 056号室
Davide Dal Martello 氏 (立教大学)
Convolutions, factorizations, and clusters from Painlevé VI (English)
Davide Dal Martello 氏 (立教大学)
Convolutions, factorizations, and clusters from Painlevé VI (English)
[ 講演概要 ]
The Painlevé VI equation governs the isomonodromic deformation problem of both 2-dimensional Fuchsian and 3-dimensional Birkhoff systems. Through duality, this feature identifies the two systems. We prove this bijection admits a more transparent middle convolution formulation, which unlocks a monodromic translation involving the Killing factorization. Moreover, exploiting a higher Teichmüller parametrization of the monodromy group, Okamoto's birational map of PVI is given a new realization as a cluster transformation. Time permitting, we conclude with a taste of the quantum version of these constructions.
The Painlevé VI equation governs the isomonodromic deformation problem of both 2-dimensional Fuchsian and 3-dimensional Birkhoff systems. Through duality, this feature identifies the two systems. We prove this bijection admits a more transparent middle convolution formulation, which unlocks a monodromic translation involving the Killing factorization. Moreover, exploiting a higher Teichmüller parametrization of the monodromy group, Okamoto's birational map of PVI is given a new realization as a cluster transformation. Time permitting, we conclude with a taste of the quantum version of these constructions.