複素解析幾何セミナー
過去の記録 ~04/30|次回の予定|今後の予定 05/01~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2025年05月12日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
神田 秀峰 氏 (東京大学)
LCK幾何学におけるOeljeklaus-Toma多様体の特徴づけ (Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
神田 秀峰 氏 (東京大学)
LCK幾何学におけるOeljeklaus-Toma多様体の特徴づけ (Japanese)
[ 講演概要 ]
Oeljeklaus–Toma(OT)多様体はKähler計量を持たない複素多様体の例として知られ, 井上曲面の高次元への一般化とみなされている. OT多様体は数論的データを用いて構成される可解多様体であり, いくつかのOT多様体は局所共形Kähler(LCK)計量を持つ. これによりLCK計量を持つ可解多様体が大量に構成されたことになり, OT多様体はLCK幾何における重要な例として盛んに研究されてきた. その構成は技巧的に見えるが, LCK計量をもつ可解多様体はこれまでOT多様体を除いて簡単なものしか知られていない.
本講演では, ある種の可解多様体がLCK計量を持つならば, それは本質的にOT多様体と一致することを示す. 幾何学的な制約から数論が現れることから, 本結果はある種の可解多様体の構成において, 数論的議論を用いることの必然性を示唆していると言える.
本講演はプレプリントarXiv:2502.12500の内容に基づく.
[ 参考URL ]Oeljeklaus–Toma(OT)多様体はKähler計量を持たない複素多様体の例として知られ, 井上曲面の高次元への一般化とみなされている. OT多様体は数論的データを用いて構成される可解多様体であり, いくつかのOT多様体は局所共形Kähler(LCK)計量を持つ. これによりLCK計量を持つ可解多様体が大量に構成されたことになり, OT多様体はLCK幾何における重要な例として盛んに研究されてきた. その構成は技巧的に見えるが, LCK計量をもつ可解多様体はこれまでOT多様体を除いて簡単なものしか知られていない.
本講演では, ある種の可解多様体がLCK計量を持つならば, それは本質的にOT多様体と一致することを示す. 幾何学的な制約から数論が現れることから, 本結果はある種の可解多様体の構成において, 数論的議論を用いることの必然性を示唆していると言える.
本講演はプレプリントarXiv:2502.12500の内容に基づく.
https://forms.gle/gTP8qNZwPyQyxjTj8