複素解析幾何セミナー

過去の記録 ~05/01次回の予定今後の予定 05/02~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2024年12月09日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
鈴木 良明 氏 (新潟大学)
The spectrum of the Folland-Stein operator on some Heisenberg Bieberbach manifolds (Japanese)
[ 講演概要 ]
Heisenberg Bieberbach多様体とは、Heisenberg群とユニタリ群との半直積における離散かつ捩れの無い部分群によってHeisenberg群を割って得られるコンパクト商のことである。この商多様体は、Heisenberg群を自身の離散部分群で割ったコンパクト商(Heisenberg冪零多様体)をさらに有限群で割った空間になっている。この講演では3次元Heisenberg Bieberbach多様体上のFolland-Stein作用素と呼ばれるCR幾何由来の微分作用素の固有値と固有空間について考察する。Heisenberg Bieberbach多様体の被覆空間であるHeisenberg冪零多様体に対しては、2004年にFollandが表現論の手法を用いてFolland-Stein作用素の固有値と固有関数が明示的に求めている。Follandの結果を応用し、3次元Heisenberg Bieberbach多様体のいくつかの例に対してもFolland-Stein作用素の固有値と固有関数を求めることができることを紹介する。特に固有空間の次元も求めることができ、Weylの法則が成り立つことも紹介したい。 
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8