談話会・数理科学講演会
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
担当者 | 会田茂樹,大島芳樹,志甫淳(委員長),高田了 |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2012年11月16日(金)
16:30-17:30 数理科学研究科棟(駒場) 002号室
旧記録は、上記セミナーURLにあります。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。
二木昭人 氏 (東京大学)
複素微分幾何に現れる積分不変量について (JAPANESE)
旧記録は、上記セミナーURLにあります。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。
二木昭人 氏 (東京大学)
複素微分幾何に現れる積分不変量について (JAPANESE)
[ 講演概要 ]
コンパクト複素多様体のもっともなじみ深い不変量は Chern 類であろう.この講演ではその secondary classes にあたる正則ベクトル場を含んだ積分不変量の族で,次のような3つを含むものについて紹介する.
(1) 各 k に対し,k 次 Chern 形式が調和形式であるようなケーラー計量が存在するための障害となる不変量.
(2) 非ケーラー多様体でも定義される不変量で,横断的正則葉層構造の特性類やLefchetz 数などから自然に得られる不変量.
(3) 代数多様体に対し,漸近的 Chow 半安定性の障害となる不変量.
これらの3つの族の共通部分にケーラー・アインシュタイン計量が存在するための障害がある.
コンパクト複素多様体のもっともなじみ深い不変量は Chern 類であろう.この講演ではその secondary classes にあたる正則ベクトル場を含んだ積分不変量の族で,次のような3つを含むものについて紹介する.
(1) 各 k に対し,k 次 Chern 形式が調和形式であるようなケーラー計量が存在するための障害となる不変量.
(2) 非ケーラー多様体でも定義される不変量で,横断的正則葉層構造の特性類やLefchetz 数などから自然に得られる不変量.
(3) 代数多様体に対し,漸近的 Chow 半安定性の障害となる不変量.
これらの3つの族の共通部分にケーラー・アインシュタイン計量が存在するための障害がある.