東京無限可積分系セミナー

過去の記録 ~07/03次回の予定今後の予定 07/04~

開催情報 土曜日 13:30~16:00 数理科学研究科棟(駒場) 117号室
担当者 神保道夫、国場敦夫、山田裕二、武部尚志、高木太一郎、白石潤一
セミナーURL https://www.ms.u-tokyo.ac.jp/~takebe/iat/index-j.html

2025年07月14日(月)

15:30 (仮)-16:30 (仮)   数理科学研究科棟(駒場) 056号室
Danilo Lewański 氏 (University of Trieste)
A spin on Gromov-Witten / Hurwitz correspondence and integrability
(English)
[ 講演概要 ]
Hurwitz numbers enumerate branched coverings of Riemann surfaces and provide a rich sandbox of examples for enumerative geometry and neighbouring areas. Surprisingly, there is a formula that connects them to the intersection theory of the moduli spaces of stable curves: the ELSV formula. Furthermore, these numbers enjoy an integrability of type 2D-Toda as they can be expressed as vacuum expectations in the Fock space, result that has been later employed in the GW/Hurwitz correspondence.

A spin-off from the research on the mirror symmetry on Calabi-Yau 3-folds led to the spin generation of Hurwitz numbers via topological recursion. Over time this result has been generalised in different directions, including the Hurwitz count of Riemann surfaces with a spin structure, which are conjecturally determining Gromov-Witten invariants of surfaces with smooth canonical divisor. This led once more to the link with integrability, this time of type BKP.