Lie群論・表現論セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2024年11月13日(水)
17:30-18:30 数理科学研究科棟(駒場) 118号室
Richard Stanley 氏 (MIT)
Some combinatorial aspects of cyclotomic polynomials
Richard Stanley 氏 (MIT)
Some combinatorial aspects of cyclotomic polynomials
[ 講演概要 ]
Euler showed that the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts. MacMahon showed that the number of partitions of n for which no part occurs exactly once is equal to the number of partitions of n into parts divisible by 2 or 3. Both these results are instances of a general phenomenon based on the fact that certain polynomials are the product of cyclotomic polynomials. After discussing this assertion, we explain how it can be extended to such topics as counting certain polynomials over finite fields and obtaining Dirichlet series generating functions for certain classes of integers.
Euler showed that the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts. MacMahon showed that the number of partitions of n for which no part occurs exactly once is equal to the number of partitions of n into parts divisible by 2 or 3. Both these results are instances of a general phenomenon based on the fact that certain polynomials are the product of cyclotomic polynomials. After discussing this assertion, we explain how it can be extended to such topics as counting certain polynomials over finite fields and obtaining Dirichlet series generating functions for certain classes of integers.