複素解析幾何セミナー
過去の記録 ~12/07|次回の予定|今後の予定 12/08~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2024年12月02日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
オンライン開催です. 対面での実施はありません.
宮地 秀樹 氏 (金沢大学)
Dualities in the $L^1$ and $L^\infty$-geometries in Teichm\”uller space (Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
オンライン開催です. 対面での実施はありません.
宮地 秀樹 氏 (金沢大学)
Dualities in the $L^1$ and $L^\infty$-geometries in Teichm\”uller space (Japanese)
[ 講演概要 ]
種数$g$のタイヒミュラー空間は種数$g$の標識付きリーマン面の変形空間である。種数$g$のタイヒミュラー空間は複素多様体であり,その正則接空間と正則余接空間は各点に対応する閉リーマン面上の微分形式を用いて表すことができる。余接空間上のノルムは余接ベクトルを表す微分形式の$L^1$-ノルムにより与えられ,タイヒミュラー計量は接ベクトルを表す微分形式の余接空間の$L^1$-ノルムの双対として与えられる。これらの幾何学をタイヒミュラー空間の$L^1$, $L^\infty$-幾何学と呼ぶ。定義から,余接空間上の$L^1$-ノルムと接空間上のタイヒミュラー計量は双対の関係にある。この講演では,タイヒミュラー計量の性質を述べた後,タイヒミュラー空間上の2次の接構造を用いて,$L^1$-ノルムとタイヒミュラー計量の間の新しい双対性を与える。
[ 参考URL ]種数$g$のタイヒミュラー空間は種数$g$の標識付きリーマン面の変形空間である。種数$g$のタイヒミュラー空間は複素多様体であり,その正則接空間と正則余接空間は各点に対応する閉リーマン面上の微分形式を用いて表すことができる。余接空間上のノルムは余接ベクトルを表す微分形式の$L^1$-ノルムにより与えられ,タイヒミュラー計量は接ベクトルを表す微分形式の余接空間の$L^1$-ノルムの双対として与えられる。これらの幾何学をタイヒミュラー空間の$L^1$, $L^\infty$-幾何学と呼ぶ。定義から,余接空間上の$L^1$-ノルムと接空間上のタイヒミュラー計量は双対の関係にある。この講演では,タイヒミュラー計量の性質を述べた後,タイヒミュラー空間上の2次の接構造を用いて,$L^1$-ノルムとタイヒミュラー計量の間の新しい双対性を与える。
https://forms.gle/gTP8qNZwPyQyxjTj8