東京確率論セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/ |
2023年11月27日(月)
17:00-18:30 数理科学研究科棟(駒場) 126号室
Stefan Junk 氏 (学習院大学)
Local limit theorem for directed polymer in (almost) the whole weak disorder regime (English)
Stefan Junk 氏 (学習院大学)
Local limit theorem for directed polymer in (almost) the whole weak disorder regime (English)
[ 講演概要 ]
We consider the directed polymer model in the weak disorder (high temperature) phase in spatial dimension d>2. In the case where the (normalized) partition function is L^2-bounded it is known for that time
polymer measure satisfies a local limit theorem, i.e., that the point-to-point partition function can be approximated by two point-to-plane partition functions at the start- and endpoint. We show
that this result continues to hold true if the partition function is L^p-bounded for some p>1+2/d. We furthermore show that for environments with finite support the required L^p -boundedness holds in the whole weak disorder phase, except possibly for the critical value itself.
We consider the directed polymer model in the weak disorder (high temperature) phase in spatial dimension d>2. In the case where the (normalized) partition function is L^2-bounded it is known for that time
polymer measure satisfies a local limit theorem, i.e., that the point-to-point partition function can be approximated by two point-to-plane partition functions at the start- and endpoint. We show
that this result continues to hold true if the partition function is L^p-bounded for some p>1+2/d. We furthermore show that for environments with finite support the required L^p -boundedness holds in the whole weak disorder phase, except possibly for the critical value itself.