東京確率論セミナー

過去の記録 ~07/03次回の予定今後の予定 07/04~

開催情報 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室
担当者 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学)
セミナーURL https://sites.google.com/view/tokyo-probability-seminar23/

今後の予定

2025年07月07日(月)

16:00-17:30   数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
髙野 凌史 氏 (大阪大学)
A semigroup approach to the reconstruction theorem for singular modelled distributions and its application
[ 講演概要 ]
In our recent research, we extended a semigroup approach used in Otto & Weber (2019) and Hoshino (2023) to provide an alternative proof of the reconstruction theorem for singular modelled distributions. As an application, we constructed a local-in-time solution to the two-dimensional parabolic Anderson model with a non-translation-invariant differential operator. In this talk, I will introduce the idea of constructing solutions to singular SPDEs based on the theory of regularity structures and highlight the differences between our approach and previous works. I will then present main results of our study. This talk is based on joint work with Masato Hoshino (Institute of Science Tokyo).

2025年07月14日(月)

16:00-17:30   数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
名古路 浩辰 氏 (京都大学)
Singularity of solutions to singular SPDEs
[ 講演概要 ]
We give a sufficient condition for the marginal distribution of the solution to singular SPDEs on the $d$-dimensional torus to be singular with respect to the law of the Gaussian measure induced by the corresponding linear equation. As applications we obtain the singularity of the $\phi^4_3$-quantum field measure with respect to the Gaussian free field measure and the border of parameters for the fractional $\phi^4$-measure to be singular with respect to the base Gaussian measure. Our approach is applicable to quite a large class of singular SPDEs. This talk is based on a joint work with S. Kusuoka (Kyoto University) and M. Hairer (EPFL).