Tokyo Probability Seminar
Seminar information archive ~11/05|Next seminar|Future seminars 11/06~
Date, time & place | Monday 16:00 - 17:30 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Makiko Sasada, Shuta Nakajima |
2023/11/27
17:00-18:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Stefan Junk (学習院大学)
Local limit theorem for directed polymer in (almost) the whole weak disorder regime (English)
Stefan Junk (学習院大学)
Local limit theorem for directed polymer in (almost) the whole weak disorder regime (English)
[ Abstract ]
We consider the directed polymer model in the weak disorder (high temperature) phase in spatial dimension d>2. In the case where the (normalized) partition function is L^2-bounded it is known for that time
polymer measure satisfies a local limit theorem, i.e., that the point-to-point partition function can be approximated by two point-to-plane partition functions at the start- and endpoint. We show
that this result continues to hold true if the partition function is L^p-bounded for some p>1+2/d. We furthermore show that for environments with finite support the required L^p -boundedness holds in the whole weak disorder phase, except possibly for the critical value itself.
We consider the directed polymer model in the weak disorder (high temperature) phase in spatial dimension d>2. In the case where the (normalized) partition function is L^2-bounded it is known for that time
polymer measure satisfies a local limit theorem, i.e., that the point-to-point partition function can be approximated by two point-to-plane partition functions at the start- and endpoint. We show
that this result continues to hold true if the partition function is L^p-bounded for some p>1+2/d. We furthermore show that for environments with finite support the required L^p -boundedness holds in the whole weak disorder phase, except possibly for the critical value itself.