Lie群論・表現論セミナー

過去の記録 ~07/20次回の予定今後の予定 07/21~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室
担当者 小林俊行
セミナーURL https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2023年06月06日(火)

17:30-18:30   数理科学研究科棟(駒場) 056号室
トポロジー火曜セミナーと合同
笹木集夢 氏 (東海大学)
簡約型球等質空間における可視的作用と不変測度 (Japanese)
[ 講演概要 ]
小林俊行氏によって創始された無重複性の伝播定理により,これまで発見されていた無重複表現において表現の無重複性に対する統一的な説明を与えられ,一方で無重複表現の新しい例が系統的に発見された.この定理における本質的な条件として,小林氏は複素多様体における可視的作用の理論を提唱した.可視的作用の概念は,無重複性の伝播定理において重要な役割を果たすだけでなく,群や等質空間に関する新しい分解定理を生み出している.

本講演では,簡約型球等質空間における可視的作用について解説する.特に,可視的に作用するときに各軌道と交叉する部分多様体(スライス)を簡約型球等質空間に対するカルタン分解により構成されることについてお話する.
また,この研究の応用として簡約型球等質空間の不変測度に関してカルタン分解に即した積分公式を明示的に与えることにより行う.