Lie群論・表現論セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2022年05月17日(火)
17:00-18:00 数理科学研究科棟(駒場) on line号室
里見貴志 氏 (東大数理)
ユニモジュラー局所コンパクト群上の畳み込み不等式の最適定数の評価
(Japanese)
里見貴志 氏 (東大数理)
ユニモジュラー局所コンパクト群上の畳み込み不等式の最適定数の評価
(Japanese)
[ 講演概要 ]
$\mathbb{R}$上で古くから知られている畳み込み不等式(Youngの不等式・逆Youngの不等式・Hausdorff--Youngの不等式)は任意のユニモジュラー局所コンパクト群$G$上に一般化できる.
本セミナーではこれらの不等式の最適定数(不等式が最適となるような両辺の比)の上下からの評価を与え,これらの評価は$G =\mathbb{R}$のときに最良となることについて説明する.
$\mathbb{R}$上で古くから知られている畳み込み不等式(Youngの不等式・逆Youngの不等式・Hausdorff--Youngの不等式)は任意のユニモジュラー局所コンパクト群$G$上に一般化できる.
本セミナーではこれらの不等式の最適定数(不等式が最適となるような両辺の比)の上下からの評価を与え,これらの評価は$G =\mathbb{R}$のときに最良となることについて説明する.