トポロジー火曜セミナー

過去の記録 ~07/01次回の予定今後の予定 07/02~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河野 俊丈, 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html
備考 Tea: 16:30 - 17:00 コモンルーム

2022年05月24日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Christine Vespa 氏 (IRMA, Université de Strasbourg / JSPS)
Polynomial functors associated with beaded open Jacobi diagrams (ENGLISH)
[ 講演概要 ]
The Kontsevich integral is a very powerful invariant of knots, taking values is the space of Jacobi diagrams. Using an extension of the Kontsevich integral to tangles in handlebodies, Habiro and Massuyeau construct a functor from the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams in handlebodies. The category A has a subcategory equivalent to the linearization of the opposite of the category of finitely generated free groups, denoted by $\textbf{gr}^{op}$. By restriction to this subcategory, morphisms in the linear category $\textbf{A}$ give rise to interesting contravariant functors on the category $\textbf{gr}$, encoding part of the composition structure of the category A.
In recent papers, Katada studies the functor given by the morphisms in the category A from 0. In particular, she obtains a family of polynomial functors on $\textbf{gr}^{op}$ which are outer functors, in the sense that inner automorphisms act trivially.
In this talk, I will explain these results and give extensions of Katada’s results concerning the functors given by the morphisms in the category A from any integer k. These functors give rise to families of polynomial functors on $\textbf{gr}^{op}$ which are no more outer functors. Our approach is based on an equivalence of categories given by Powell. Through this equivalence the previous polynomial functors correspond to functors given by beaded open Jacobi diagrams.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html