Tuesday Seminar on Topology

Seminar information archive ~05/20Next seminarFuture seminars 05/21~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KOHNO Toshitake, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya
Remarks Tea: 16:30 - 17:00 Common Room

2022/05/24

17:00-18:00   Online
Pre-registration required. See our seminar webpage.
Christine Vespa (IRMA, Université de Strasbourg / JSPS)
Polynomial functors associated with beaded open Jacobi diagrams (ENGLISH)
[ Abstract ]
The Kontsevich integral is a very powerful invariant of knots, taking values is the space of Jacobi diagrams. Using an extension of the Kontsevich integral to tangles in handlebodies, Habiro and Massuyeau construct a functor from the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams in handlebodies. The category A has a subcategory equivalent to the linearization of the opposite of the category of finitely generated free groups, denoted by $\textbf{gr}^{op}$. By restriction to this subcategory, morphisms in the linear category $\textbf{A}$ give rise to interesting contravariant functors on the category $\textbf{gr}$, encoding part of the composition structure of the category A.
In recent papers, Katada studies the functor given by the morphisms in the category A from 0. In particular, she obtains a family of polynomial functors on $\textbf{gr}^{op}$ which are outer functors, in the sense that inner automorphisms act trivially.
In this talk, I will explain these results and give extensions of Katada’s results concerning the functors given by the morphisms in the category A from any integer k. These functors give rise to families of polynomial functors on $\textbf{gr}^{op}$ which are no more outer functors. Our approach is based on an equivalence of categories given by Powell. Through this equivalence the previous polynomial functors correspond to functors given by beaded open Jacobi diagrams.
[ Reference URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html