Tuesday Seminar on Topology

Seminar information archive ~12/02Next seminarFuture seminars 12/03~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KOHNO Toshitake, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya
Remarks Tea: 16:30 - 17:00 Common Room

Next seminar

2022/12/06

17:00-18:00   Online
Pre-registration required. See our seminar webpage.
Quentin Faes (The Univesity of Tokyo)
Torsion in the abelianization of the Johnson kernel (ENGLISH)
[ Abstract ]
The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves, and is also the second term of the so-called Johnson filtration of the mapping class group. The rational abelianization of this group is known, but it was recently proved by Nozaki, Sato and Suzuki, that the abelianization has torsion. They used the LMO homomorphism. In this talk, I will explain a purely two-dimensional proof of this result, which provides a lower bound for the cardinality of the torsion part of the abelianization. These results are also valid for the case of an open surface. This is joint work with Gwénaël Massuyeau.
[ Reference URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html