複素解析幾何セミナー
過去の記録 ~12/07|次回の予定|今後の予定 12/08~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2021年10月11日(月)
10:30-12:00 オンライン開催
青井 顕宏 氏 (阿武野高等学校)
cscK計量に付随する完備スカラー平坦Kähler計量について (Japanese)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB
青井 顕宏 氏 (阿武野高等学校)
cscK計量に付随する完備スカラー平坦Kähler計量について (Japanese)
[ 講演概要 ]
複素多様体上のKähler計量であって, そのスカラー曲率が定数となるもの(cscK計量)が存在するか, という問題は非自明であり,極めて重要である.ここでは正則ベクトル場などに対して適当な条件を満たす偏極多様体と, 滑らかな超曲面を考える. 本講演では,この超曲面を無限遠と見做し, それが適当な偏極類にcscK計量を持つ, という境界条件を満たせば,その補集合は漸近錐的完備なスカラー平坦Kähler計量を許容する, という結果について紹介を行い,時間が許す限り関連する問題についても紹介する.
[ 参考URL ]複素多様体上のKähler計量であって, そのスカラー曲率が定数となるもの(cscK計量)が存在するか, という問題は非自明であり,極めて重要である.ここでは正則ベクトル場などに対して適当な条件を満たす偏極多様体と, 滑らかな超曲面を考える. 本講演では,この超曲面を無限遠と見做し, それが適当な偏極類にcscK計量を持つ, という境界条件を満たせば,その補集合は漸近錐的完備なスカラー平坦Kähler計量を許容する, という結果について紹介を行い,時間が許す限り関連する問題についても紹介する.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB