Lie群論・表現論セミナー
過去の記録 ~09/13|次回の予定|今後の予定 09/14~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2021年07月20日(火)
17:00-18:00 数理科学研究科棟(駒場) Online号室
田森宥好 氏 (北海道大学)
零でない線形周期の存在の必要条件 (Japanese)
田森宥好 氏 (北海道大学)
零でない線形周期の存在の必要条件 (Japanese)
[ 講演概要 ]
$(G,H)$を対称対$(\mathrm{GL}(n,\mathbb{H}),\mathrm{GL}(n,\mathbb{C})),(\mathrm{GL}(2n,\mathbb{R}),\mathrm{GL}(n,\mathbb{C}))$とする.この時,$G$の滑らかで緩増加な既約認容Fr\'{e}chet表現$\pi$の $H$-線形周期の空間の次元は$1$以下であることがBroussous-Matringeにより知られている.$G$の旗多様体の各$H$-軌道が主系列表現のホモロジーに与える影響を考えることで,$\pi$の零でない$H$-線形周期が存在する必要条件を紹介する.これはアルキメデス局所体の場合のPrasadとTakloo-Bighashの予想を与える.鈴木美裕氏(金沢大学)との共同研究に基づく.
$(G,H)$を対称対$(\mathrm{GL}(n,\mathbb{H}),\mathrm{GL}(n,\mathbb{C})),(\mathrm{GL}(2n,\mathbb{R}),\mathrm{GL}(n,\mathbb{C}))$とする.この時,$G$の滑らかで緩増加な既約認容Fr\'{e}chet表現$\pi$の $H$-線形周期の空間の次元は$1$以下であることがBroussous-Matringeにより知られている.$G$の旗多様体の各$H$-軌道が主系列表現のホモロジーに与える影響を考えることで,$\pi$の零でない$H$-線形周期が存在する必要条件を紹介する.これはアルキメデス局所体の場合のPrasadとTakloo-Bighashの予想を与える.鈴木美裕氏(金沢大学)との共同研究に基づく.