談話会・数理科学講演会
過去の記録 ~11/01|次回の予定|今後の予定 11/02~
担当者 | 足助太郎,寺田至,長谷川立,宮本安人(委員長) |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2021年04月30日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(4月30日12:00)。
石井 志保子 氏 (東京大学)
Uniform bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds (Talk in Japanese, Slide in English)
参加登録を締め切りました(4月30日12:00)。
石井 志保子 氏 (東京大学)
Uniform bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds (Talk in Japanese, Slide in English)
[ 講演概要 ]
In the talk I will show that the minimal log discrepancy of every pair consisting of a smooth 3-fold and a "general" real ideal is computed by the divisor obtained by at most two weighted blow ups. Our proof suggests the following conjecture:
Every pair consisting of a smooth N-fold and a "general" real ideal is computed by a divisor obtained by at most N-1 weighted blow ups.
This is regarded as a weighted blow up version of Mustata-Nakamura's conjecture. The condition "general" is slightly weakened from the version presented in ZAG Seminar.
In the talk I will show that the minimal log discrepancy of every pair consisting of a smooth 3-fold and a "general" real ideal is computed by the divisor obtained by at most two weighted blow ups. Our proof suggests the following conjecture:
Every pair consisting of a smooth N-fold and a "general" real ideal is computed by a divisor obtained by at most N-1 weighted blow ups.
This is regarded as a weighted blow up version of Mustata-Nakamura's conjecture. The condition "general" is slightly weakened from the version presented in ZAG Seminar.