東京名古屋代数セミナー
過去の記録 ~09/10|次回の予定|今後の予定 09/11~
担当者 | 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、中岡 宏行、高橋 亮 |
---|---|
セミナーURL | http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html |
2021年04月22日(木)
16:00-17:30 オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Julian Külshammer 氏 (Uppsala University)
Exact categories via A-infinity algebras (English)
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
オンライン開催の詳細は下記URLをご覧ください。
Julian Külshammer 氏 (Uppsala University)
Exact categories via A-infinity algebras (English)
[ 講演概要 ]
Many instances of extension closed subcategories appear throughout representation theory, e.g. filtered modules, Gorenstein projectives, as well as modules of finite projective dimension. In the first part of the talk, I will outline a general strategy to realise such subcategories as categories of induced modules from a subalgebra using A-infinity algebras. In the second part, I will describe how this strategy has been successfully applied for the exact category of filtered modules over a quasihereditary algebra. In particular I will present compatibility results of this approach with heredity ideals in a quasihereditary algebra from joint work with Teresa Conde.
[ 講演参考URL ]Many instances of extension closed subcategories appear throughout representation theory, e.g. filtered modules, Gorenstein projectives, as well as modules of finite projective dimension. In the first part of the talk, I will outline a general strategy to realise such subcategories as categories of induced modules from a subalgebra using A-infinity algebras. In the second part, I will describe how this strategy has been successfully applied for the exact category of filtered modules over a quasihereditary algebra. In particular I will present compatibility results of this approach with heredity ideals in a quasihereditary algebra from joint work with Teresa Conde.
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html