談話会・数理科学講演会
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
担当者 | 足助太郎,寺田至,長谷川立,宮本安人(委員長) |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2021年01月22日(金)
15:30-16:30 オンライン開催
参加を希望される場合は、下記URLから参加登録を行ってください。
中島 啓 氏 (Kavli IPMU)
Convolution algebras and a new proof of Kazhdan-Lusztig formula (JAPANESE)
https://forms.gle/AAVzoCGPyLmzDJHf7
参加を希望される場合は、下記URLから参加登録を行ってください。
中島 啓 氏 (Kavli IPMU)
Convolution algebras and a new proof of Kazhdan-Lusztig formula (JAPANESE)
[ 講演概要 ]
Kazhdan-Lusztig 予想は、Beilinson-Bernstein, Brylinski-Kashiwara によって解決されましたが、昨年 Braverman, Finkelbergとの共同研究において、その別証明を与えました。その証明は、第一段階として射影直線から旗多様体 (ただし Langlands 双対をとる) への写像のモジュライ空間の同変交叉コホモロジーにLie環の普遍展開環の表現を作り、第二段階として同変コホモロジーの局所化定理により、モジュライ空間の固定点集合の交叉コホモロジーを解析することで、Lie環の表現の指標公式を得る、という方法で行われました。同変パラメータが最高ウェイトに同一視されます。この方法は、これまでもアファイン・ヘッケ環や、量子アファイン展開環の表現の場合に用いられてきたものの variant ですが、クーロン枝の量子化の研究などからより多くの場合に適用できることが期待されます。
[ 参考URL ]Kazhdan-Lusztig 予想は、Beilinson-Bernstein, Brylinski-Kashiwara によって解決されましたが、昨年 Braverman, Finkelbergとの共同研究において、その別証明を与えました。その証明は、第一段階として射影直線から旗多様体 (ただし Langlands 双対をとる) への写像のモジュライ空間の同変交叉コホモロジーにLie環の普遍展開環の表現を作り、第二段階として同変コホモロジーの局所化定理により、モジュライ空間の固定点集合の交叉コホモロジーを解析することで、Lie環の表現の指標公式を得る、という方法で行われました。同変パラメータが最高ウェイトに同一視されます。この方法は、これまでもアファイン・ヘッケ環や、量子アファイン展開環の表現の場合に用いられてきたものの variant ですが、クーロン枝の量子化の研究などからより多くの場合に適用できることが期待されます。
https://forms.gle/AAVzoCGPyLmzDJHf7